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Abstract 
The relativistic cold fluid model is used to study the 

propagation of the nonlinear travelling wave in a free 
electron laser (FEL) with electromagnetic wiggler.  It is 
convenient to transform the relevant equations to the 
frame of reference rotating with the wiggler.  The 
travelling-wave ansatz is employed to obtain three 
coupled, nonlinear ordinary differential equations that 
describe the nonlinear propagation of the coupled wave.  
Saturation and solitary waves in FELs with 
electromagnetic wiggler may be investigated using these 
equations.  In the small signal limit, the wave equations 
are linearized and the dispersion relation for the travelling 
wave is obtained.  The numerical solution of the 
travelling-wave dispersion relation reveals the range of 
parameters for its unstable solutions.  Instability curves 
with two peaks are found, for which the phase velocity is 
smaller and larger than the beam velocity.  

INTRODUCTION 
Electromagnetic wiggler has been proposed as an 

alternative to the conventional magnetostatic wiggler. 
There are investigations that have considered employing 
electromagnetic pumps in FELs [1-7]. One advantage of 
the electromagnetic wiggler is its favourable scaling law 
for the radiation wavelength compared to the 
magnetostatic wiggler [8].  For this and other reasons 
optical wiggler has been used for investigation of x-ray 
FEL [6,7]. 

The purpose of the present investigation is to use the 
relativistic cold fluid model to study the propagation of 
the nonlinear travelling-wave in a FEL with 
electromagnetic wiggler.  The method of analysis and 
notations are similar to Ref. [9] where this problem for 
the magnetostatic wiggler was solved.  

THEORETICAL MODEL AND 
NONLINEAR TRAVELING-WAVE 

EQUATIONS  
Electromagnetic wiggler can be described as [10]  

( ) ( ) ( )0 ˆ ˆ, cos sin0 0 0 0t B k z t e k z t ex y= + + +B x                                                                                                           

( ) ( ) ( ) ( )0 ˆ ˆ, / sin cos0 0 0 0 0 0 0t B ck k z t e k z t ex y= + +E x (1) 

The macroscopic cold-fluid model which will be 
employed, consists of the continuity equation 

( ) 0z
n nV
t z
+ = ,                                                     (2) 

and the z component of relativistic momentum equation 
2pz mc e

t z z
= + ,                                           (3)          

where ( )1/22 2 21 / m c= +p  is the relativistic factor, 

and zp  is the longitudinal momentum.  The axial 
component of  the Maxwell equation 

4 1
c c t

× = +J  ,                                  (4) 

can be written as 

( )
2

0 04 z ze nV n V
z t

= .                               (5) 

Using /z zV p m=  in Eq. (5) and differentiating Eq. 
(3) with respect to t  , give 

  
2 2

2 2 0
02

0 0

zz z
p

pp pnmc
t t z n

= .     (6) 

The transverse canonical momentum is a constant of 
motion. We use /e c=p A . The wave equation for 
perturbed vector potential in terms of momentum can be 
written as  

22 2
0 0

2 2 2 2
0 0

1 p n
z c t c n

=
ppp ,          (7) 

where 2 2
0 04 /p e n m=  and ( )1/22 2 2

0 01 / m c= +p  

denote unperturbed values.  In the wiggler coordinate 
system which defined by [10] 

( ) ( )1 0 0 0 0ˆ ˆ ˆcos sinx ye k z t e k z t e= + + + , 

( ) ( )2 0 0 0 0ˆ ˆ ˆsin cosx ye k z t e k z t e= + + + , 

3̂ ẑe e= ,          (8) 
two component of Eq. (7) can be transformed to the 
following expressions, 
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zz

p p p
tc t

ppnp
nc

=
                         (9) 

2 22 12 0 0 22
p pk k p

zz
+

221 022 1 22 0 202 2 2 0

p p pnpp
t nc t c

+ =   (10) 

 
By making the travelling-wave ansatz that the 

dependencies of all of the quantities 1p , 2p , 3p , and 
n  on z  and t  are only through the combination 

z ut= , where u const=  is the speed of  the 
wave, and introducing dimensionless quantities  

p
mc

= ,  p
mc

= ,  
u
c

= ,                   (11) 

where 1, 2,3= , Eqs. (2), (6), (9), and (10), may then 
be reduced to 

( ) ( )
22

2 2 01 2
0 0 0 12 21 2d dk k

d d c
+      

2
0 011

2
0 0

p n
c n

=                                                   (12) 

( ) ( )
2

2 2 1
0 021 2d dk

d d
+ +                           

22
02 0 2

0 22 2
0

p nk
c c n

=                            (13) 

( )
22

0 3 03
32 2

0 0

pd n
d c n

=            (14) 

3 0d n
d

= ,                                             (15) 

where cu /= . Equation (15) can be integrated to give 

( )
0 3

bn
n

= ,                                                      (16) 

where 0n  and 03 0/b =  are constants. With the 

introductions of the dependent variable 3Z = , 
dimensionless traveling-wave variable 0k= , and the 
use of Eq. (16) in Eqs. (12)-(14), and performing some 
algebraic manipulation, we obtain  

( ) ( )

( )( )

2
1 2

2
02

1 1/22 2 2 2
1 2

ˆ1 2 1

ˆ
ˆ1

1 1

ph

p b
ph

v

v
Z

+

+
+ + +

         

( )2 2
0ˆ ˆ ˆ1 ,c p phv= +                                               (17) 

( ) ( )2
2 1 2ˆ1 2 1 phv+ +                                           

( )( )
2

02
1/22 2 2 2

1 2

ˆ
ˆ1 0,

1 1

p b
phv

Z
+ =

+ + +
       (18) 

( ) ( )( )
2

0
1/22 2 2 2 2

1 2

ˆ

1 1 1

p b Z
Z

Z
+

+ + +
             

( ) ( )
2

0
2

ˆ
1 0

1
p

b+ = ,                                              (19) 

where the overdot denotes /d d , and 

0ˆ /c c ck= , mceBc 00 /= , 2 2 2 2
0ˆ /p p c k= , 

2 2
0 0/p p= , 2 2

0 04 /p n e m= , 0 0ˆ /phv ck= , 
1/22 2

0 0ˆ/ 1 1/b cV c= = .                              (20) 

By multiplying 1 , 2 , and Z  by Eqs. (17)-(19), 
respectively, we find an exact integral of motion, 

( )( ) ( )( )

( )( )

2 2 2 2 2 2 2
1 2 1 2

2 1/20 2 2 2 2
1 22

1 1 ˆ1 1
2 2

ˆ
1 1

1

ph

p b

Q Z v

Z

= + + + +

+ + + +
 

  
( ) ( )

2
0 2 2

0 12

ˆ 1
ˆ ˆ ˆ+ 1 const.

1
p b

c p phZ v+ = .  

                                                                                      (21)             

The stationary solutions to Eqs. (17)-(19), denoted by 

01 , 02 , and 0Z , can be obtained by setting 
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/ 0d d = . Using 1 2 0Z= = =  gives 01 0ˆc= , 

02 0= , and ( )0 0 1bZ = . 

SMALL-SIGNAL EQUATIONS 

We will now investigate Eqs. (17)-(19) in the small-
signal limit.  By using 1 01 1= + , 2 2= , and 

0Z Z Z= + , and by linearizing for small 1 , 2 , 

and Z , the following set of equations will be obtained 

( ) ( )

( ) ( )
( )

2
1 2

2 2 2
2 2

12

ˆ1 2 1

ˆ ˆ 1
ˆˆ1

ph

c p
ph p

b

v

v

+

+ +
                       

( )
( )

2

2

ˆ ˆ 1
0,c p b

b

Z =                                            (22) 

( ) ( ) ( )2 2 2
2 1 2ˆˆ ˆ1 2 1 1 0,ph p phv v+ + + =   

                                                                                   (23)                                                                                                                     

( )
( )

( )
( )

2 2 2

12 2

ˆ 1 ˆ ˆ 1
0

p b c p b

b b

Z Z+ + = .     (24) 

By assuming  dependency of the form ( )ˆexp ik , 

where 0
ˆ /k k k=  and ( )k̂ k z ct= , plane wave 

solutions to Eqs. (40)-(42) are considered. In this case  

( )1 1
ˆˆ exp ik= , ( )2 2

ˆˆ exp ik= , and 

( )ˆˆ expZ Z ik= , are substituted in Eqs. (22)-(24) to 

obtain matrix equations relating the complex amplitudes 

1ˆ , 2ˆ , and Ẑ . For a nontrivial solution of Eq. (43) 
the determinant of the matrix should vanish.  This, after 
some straightforward algebraic manipulation,  will lead to 
the traveling-wave full dispersion relation, 

( ) ( ) ( )

( ) ( )

2 22 2 2 2 2

2 2 2

ˆ ˆ ˆˆ ˆˆ/ 1

ˆ ˆ ˆˆ 1

b p b ph p

ph p

k k v k

k v k

+

+

                   

( ) ( ) ( )2 2 2 2 2 2 2 2 2ˆ ˆˆ ˆ ˆ ˆˆ1 1 1 ,c p p ph pk v k= +

where ( ) 12 21b b= . For ˆ 0phv = , this dispersion 

relation reduces to that of magnetostatic wiggler FEL [9]. 

 A formal correspondence between the traveling-wave 
dispersion relations and normal-mode dispersion 
relations, which are functions of normalized frequency 

0ˆ / ck=  and wave number k̂ , is established by 
ˆˆ k= substitution. For the equation (25), this gives 

( ) ( ) ( )
( ) ( )

2 222 2 2

22 2

ˆ ˆˆ ˆ ˆ ˆˆ/ 1

ˆˆ ˆˆ 1

b p b ph p

ph p

k v k

v k

+

+

 

( ) ( )2 2 2 2 2 2 2 2 2ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ1c p p ph pk v k= + . (26) 

This dispersion relation is similar in form to the 
corresponding normal-mode dispersion relation in Ref. 
[11].           

NUMERICAL ANALYSIS OF STABILITY 
PROPERTIES 

The six-degree polynomial dispersion equation (25) is 
solved numerically, to find the instability of the small 
signal in a FEL with electromagnetic wiggler.  For  
ˆ 0.5phv =  , ˆ 0.05c = and  1.96b = , Fig. 1 shows three-

dimensional plots of / Reˆ ˆIm k k  as functions of / b  

and ˆ p . In this figure there are two unstable curves.  For 

one curve b<  which corresponds to the FEL 
resonance and is due to the unstable coupling between the 
slow space-charge wave and the electromagnetic radiation 
with wave number ˆ 1k .  Whereas, for the other curve 

b>  and the unstable coupling is between the fast 

space-charge wave with the same ˆ 1k  electromagnetic 
wave, which is not relevant to the FEL resonance.  Figure 
1 also shows that   and b  differ widely for the two 

unstable curves at large ˆ p  and their difference becomes 

less as ˆ p  is lowered, which is the characteristics of the 

Raman regime.  However, for small values of ˆ p , which 

corresponds to the Compton-regime, b as it should 
be according to the theory. 

Setting  ˆ 0phv =  reduces the problem to the 
magnetostatic wiggler case, for which the unstable curves 
are shown in Fig. 2 for 1.96b =  and ˆ 0.05c = .  
Similar to the electromagnetic wiggler case, there are two 
unstable curves and instability exists for both  b<  and 

b>  in the magnetostatic wiggler.   The curve for 

b>  in Fig. 2, which is due to the coupling of the fast 
space-charge wave with the electromagnetic radiation 

 (25) 
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with ˆ 1k  wave number, can be helpful in the numerical 
study of the nonlinear traveling-wave equations in the 
FEL with magnetostatic wiggler.  The analytical 
investigation of  magnetostatic wiggler in Ref. [9] was 
performed for b<  case that is relevant to the FEL 
resonance.  The reason that they only found b<  for 
the small signal instability is that they only considered the 
coupling between the slow space-charge wave with the 
radiation. 

 

Figure 1: Three-dimensional plot of / Reˆ ˆIm k k  as a 

function of / b  and ˆ p  for ˆ 0.5phv = , 1.96b = , 

ˆ 0.05c = . 

 

 

Figure 2: Three-dimensional plot of / Reˆ ˆIm k k  as a 

function of / b  and ˆ p  for ˆ 0phv = , 1.96b = , 

ˆ 0.05c = . 

 
CONCLUSION 

The relativistic fluid theory is used to find three coupled 
and nonlinear differential equations [Eqs. (17)-(19)] that 
describe the nonlinear traveling-wave propagation in a 

FEL with electromagnetic wiggler.  By linearizing these 
equations the small-signal analysis yields the traveling 
wave dispersion relation.  Since the saturated states of 
linear instabilities are often associated with nonlinear 
wave equation, the traveling-wave dispersion relation is 
studied numerically to find appropriate range of 
parameters. 

For both electromagnetic and magnetostatic wigglers, 
instability curves have two peaks.  One with 

b<  for 
the FEL resonance and the other with  b>  that 
corresponds to the coupling of the fast space-charge wave 
with the ˆ 1k  electromagnetic wave. 

   The numerical investigation of the nonlinear traveling 
wave is expected to give new insights into the solitary 
solutions for the FELs. 
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