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Abstract 
The dynamical stability of electron trajectories in a 

free-electron laser with planar wiggler is studied.  The 
analysis is based on the numerical simulation of 
Kolmogorov entropy to investigate how the separation of 
the trajectories of two neighbouring electrons in the six-
dimensional phase space evolves along the undulator.  
Self-electric and self-magnetic fields are taken into 
account and an adiabatically tapered wiggler magnetic 
field is used in order to inject the electrons into the 
wiggler. A considerable decrease in the dynamical 
stability of electron trajectories was found near the 
resonance region.  It was found that self-fields decrease 
the dynamical stability of electron trajectories in group I 
orbits and increase it in group II orbits.  Furthermore, the 
electromagnetic radiation weakens the dynamical stability 
of electrons as it grows exponentially and become very 
intense near the saturation point.  

INTRODUCTION 
The free-electron laser (FEL) in the millimetre or 

submillimeter regime operates with a high density and 
low energy relativistic electron beam. In this operating 
regime, the self-electric and self-magnetic fields of the 
electron beam are strong and a focusing mechanism, like 
an axial magnetic field, is necessary to confine the beam. 
It has been suggested that an electron beam may be 
confined by passing it through an ion channel, which may 
provide an alternative to the use of an axial magnetic 
field. It has been found by several theoretical 
investigations that ion-channel guiding may provide some 
advantages [1-3]. 

The chaotic motion of an electron in FEL, has been 
studied using Poincaré surface-of-section method, in 
helical [4-10] as well as planar [8, 11] wiggler. In these 
studies axial magnetic field guiding has been used 
whereas helical wiggler with ion-channel guiding was 
used in [10]. 

In some of the above studies [6-8, 10, 11] computation 
of Liapunov exponents has been used in a limited manner 
to confirm the results of chaoticity. Zhang and Elgin12 
used Kolmogorov entropy (Liapunov exponents) to study 
the self-field effects on the dynamical stability of an 
electron motion in a FEL with planar wiggler. But their 
results are invalid because they did not use a focusing 
mechanism like an axial magnetic field to confine the 
beam. In their analysis, the electron under the influence of 
self-fields, will drift away from the axis and diverge long 

before reaching the end of the wiggler. The same thing 
happens if the adiabatic wiggler magnetic field is 
removed; therefore, their conclusion in Ref. 12 that the 
adiabatic entry field is trivial in 1D wiggler is incorrect.  

The purpose of the present paper is to study the 
dynamical stability of an electron motion, using 
Kolmogorov entropy, in a FEL with planar wiggler when 
the focusing of the beam is provided by an ion channel. 
The latter problem has not been studied to the best of our 
knowledge. 

KOLMOGOROV ENTROPY 
Our analysis is based on the numerical solution 

concerning Kolmogorov or metric entropy therefore we 
will describe this approach briefly in this section. In 
studying chaotic motions it is important to see if the 
motion is sensitive to small changes in initial conditions 
[13]. Usually, one should expect closely neighboured 
trajectories to diverge exponentially in time for chaotic 
motion and to separate only linearly in time for the 
regular motion. Consider a reference electron with initial 
conditions )0()0( rr t xx ==  and the trajectory 

),...,,( 621 rrrr xxx=x  in the 6D phase space. Now 
choose a closely neighboured electron with initial 
conditions )0()0()0( xxx δ+== rn t  and the trajectory 

),...,,( 621 nnnn xxx=x , with )0()0( rxx <<δ . To study 
the separation of these two electrons with time we define 
a quantity 
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where )(td  is the norm or the separation of the two 
trajectories in the phase space  
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and )(0 otdd == . k is zero for the regular motion 

because )(td  grows linearly with time and it grows 
exponentially for the chaotic motion and k becomes a 
positive number. For negative k, )(td  converges 
exponentially. Therefore, k determines the dynamical 
stability of the motion which is related to the chaocity of 
the motion. 

Two problems may cause difficulties in computation of 
k . One is that if the norm )(td  increases exponentially 
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we might encounter computational overflow. The second 
one is that in a bounded system the computational time is 
not infinite. Benettin et al. [14] proposed the following 
procedure, related to the Kolmogorov entropy, to solve 
these problems. The total time T  is divided into N equal 
and small interval τ  so that τNT = . In this procedure, 
the trajectory of the neighbouring electron is not 
computed continuously. Rather, at the beginning of each 
time step the norm )(td  is brought back to the original 

norm at 0d . This scheme may be iterated from 0=t  to 
τ=t  in N steps to obtain a sequence of positive numbers 

id , Ni ,...,2,1=  and calculate the following quantity; 
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Benettin et al. [14] have proved that the limit of 
)( ∞→NkN  exists and this limit is independent of 0d . 

Furthermore, if the initial point )0(rx
r

 is chosen to be 
close to a chaotic region of phase space, then 

NN kk ∞→= lim  will be independent of the initial 
condition )0(rx

r
.  k is called the entropy-like quantity and 

is related to the Kolmogorov entropy. The value of k 
shows how the trajectories of two closely spaced 
electrons in phase space diverge from each other. A small 
value of k indicates a small separation of the trajectories. 
When k is positive the motion is chaotic and the closely 
neighboured trajectories separate exponentially. On the 
other hand, when k is negative the motion is nonchaotic 
and the neighbouring trajectories approach each other. It 
should be noted that since the interaction length of FEL 
systems are finite we should take the iteration step very 
small and the number of iteration very large, e.g. of the 
order of 108, so that the condition ( ∞→= Nkk N ,lim ) 
is approximately met.     

EQUATION OF MOTION 
The relativistic equations of motion of a single electron 

in external electromagnetic fields E  and B  are 
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By introducing dimensionless velocity 

c
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equation of motion (4) can be written as  
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In order to write Eq. (6) in a dimensionless from we 
introduce normalized quantities in Guassian units.  
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Here, the independent variable has been changed from t  
to z  using )( dzdvdtd z= . 

Equations (10)-(12) form a set of first order ordinary 
differential equations that will be solved numerically, in 
this analysis, by fourth order Runge-Kutta method to 
study the dynamical stability of a single electron in a FEL 
with an ion channel under influence of self-fields and a 
laser field. The iteration step is taken equal to 0.01 µm 
which corresponds to 3×108 total number of iteration for 
an interaction length of 3 m. The initial position of the 
reference electron is chosen to be on the radial position of 
0.0065 mm and zero azimuthal position. The relativistic 
factor is 3. The neighbouring electron has the same 
position with slightly different relativistic factor equal to 
3×(1+10-8). This corresponds to an initial Euclidean norm 
of 3.18×10-8. Initial velocities of both electrons are in the 
axial direction. 

 There are two methods to solve Eqs. (10)-(12). In the 
first method we directly solve the set of equations (10)-
(12) for both the reference and the neighbouring electron. 
In the second method instead of solving these equations 
for the neighbouring electron we expand and linearize 
Eqs. (10)-(12) around coordinates of the reference 
electron and along the tangent vector rinii xxx −=δ , to 
find differential equations for ixδ  [13]. Equations (10)-
(12) are represented by  
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Now we linearize the equations about the coordinates of 
the reference electron ),,,( zrrrr Vyx K=x  to yield the 
tangent map 
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Solving these equations numerically will yield ixδ to 
obtain the norm 
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In the present analysis we use the linearized tangent 
method, however, the direct method yields almost 
identical results for the final entropy-like quantity Nk . 

Parameters of the FEL used in the numerical 
calculation are as follows. The amplitude of the wiggler 
field is taken as GBw 800=  and its wavelength as 
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2=wλ  cm. The initial power is assumed to be 1 W and 
its FEL gain length is equal to 18=gl  cm. The density of 

the electron beam is 12107.1 ×=bn  cm-3 which 
corresponds to the current 1000=I  A and the radius of 
the beam 2.0=bR  cm. The radiation wavelength is 

approximately found from 22 zwl γλλ =  mm.  
In many occasions self-fields of a relativistic electron 

beam are important to be considered and they may be 
written as15  
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where 2/1
0

2 )4( mne bp πω =  is the plasma frequency. 

PLANAR WIGGLER 
The planar wiggler magnetic field can de written as 

zkzBe wwy sin)(ˆ−=wB .                (18) 

Since initial conditions with longitudinal velocity 
correspond only to the points prior to entrance into the 
interaction region, an adiabatic entry field of the wiggler 
is necessary in order to inject the electron into the 
equilibrium and steady-state trajectories. It should be 
noted that in the absence of adiabatic entry wiggler field, 
under the above mentioned initial conditions, electrons 
will drift away from the axis and will hit the drift tube 
wall. The adiabatic magnetic field is  

      
 
 

  (19) 
 

where wN  is the period number of the adiabatic magnetic 
field. 

In the linear phase of a FEL, laser field grows 
exponentially and for a plane polarized radiation may be 
written as 
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An expression for the radiation power can be obtained 
from Eqs. (26) and (27), 
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where 2.0=bR  cm . In the numerical analysis the initial 
power is assumed to be 1W, which corresponds to 

5
0 1041.3 −×=E . 

Ion channel 

The transverse electrostatic field generated by an ion 
channel may be expressed by  

).ˆ(2 yxi eyexen += )πiE                   (23) 
    The numerical and theoretical analysis of the 
relativistic motion of an electron in a FEL with planar 
wiggler and ion-channel guiding with or without self-
fields and in the absence of radiation show that the 
equilibrium orbits, similar to the case of axial magnetic 
field, divide into group I and group II orbits. Figure 1 
shows equilibrium orbits, by numerical computation, with 
self-fields neglected.  

 
Figure 1: Equilibrium trajectories with ion-channel guiding and 
with self-fields neglected 

 
Figure 2: Variation of Kolmogorov entropy Nk  with iω . Self-
fields are included in solid line but they are neglected in dotted 
lines. 

Figure 2 shows how the entropy-like quantity Nk  
varies with ion-channel density, represented by the 
normalized ion-channel frequency 

2/1222 )4( wii kmcenπω = , in the absence of radiation. 
Self- fields are neglected in dotted lines and they are 
included in solid lines. Sharp increase of Kolmogorov 
entropy Nk  in the resonance region indicates stronger 
dynamical instability of the electron motion, in both 
group I and group II orbits, compared to other regions 
whether or not self-fields are included in the analysis. 
Figure 2 also shows that self-fields have negligible effects 

⎪
⎩

⎪
⎨

⎧

≤

≤≤
=

zkNB

Nzk
N

zk
B

zB

www

ww
w

w
w

w
π

π

2,

20,
4

sin
)(

THPA15 Proceedings of FEL2010, Malmö, Sweden

598 FEL Theory



 

on Nk  away from the resonance region for both group I 
and group II orbits. Self-fields increase the dynamical 
stability in group I orbits and decrease it in group II 
orbits.  

 
Figure 3: Evolution of Kolmogorov entropy Nk  with z  when 
self-fields and exponentially growing radiation are included.  

Figure 3 shows the evolution of Kolmogorov entropy 

Nk  with z  when self-fields and radiation are included in 
the computation and the focusing of the beam is made by 
ion channel. Similar to the case of axial magnetic field the 
laser field deteriorates the stability. As the laser field 
grows exponentially in FEL, dynamical stability 
deteriorates mainly at the end of the undulator, where the 
amplitude of radiation becomes very large near the 
saturation point. 

CONCLUSION 
In this analysis the dynamical stability of a relativistic 

electron motion in a FEL with a planar wiggler is studied 
by numerical solution of Kolmogorov entropy (entropy-
like quantity). The self fields of the electron beam and 
exponentially growing radiation is taken into account and 
focusing of the beam is made by an ion channel. 

For this focusing mechanism, sharp increase of Nk  in 
the resonance region is found with or without the self-
field effects, which is indicative of a relative dynamical 

instability of the resonance region. It was found that self-
fields increase the dynamical stability in group I orbits 
and decrease it in group II orbits. It is also shown that 
presence of a strong radiation in the FEL deteriorates the 
dynamical stability. Contrary to what is reported in Ref. 
12, we have shown that an injection mechanism, like an 
adiabatically tapered wiggler, and a focusing mechanism 
like an ion channel is necessary. Otherwise, injected 
electrons will drift away from the z-axis and diverge.  
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