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Abstract

The proposed SwissFEL project is an X-ray Free-

Electron Laser, which operates down to a wavelength of

1 Ångstrom. In comparison to other XFELs (LCLS, SCSS

and European XFEL) SwissFEL has the lowest beam en-

ergy of 5.8 GeV. Therefore a low beam emittance is re-

quired for maximum overlap between the electron beam

and the fundamental FEL mode and for a sufficient degree

of transverse coherence at the saturation point. We present

a numerical analysis of the radiation field properties along

the undulator, with an emphasis on the degree of coherence

at the saturation point and at the undulator exit.

INTRODUCTION

Free-electron lasers [1] are radiation sources, which

open up many new classes of experiments due to the high

brightness, high photon flux and short pulse duration [2].

One of the most attractive application is coherent diffrac-

tion imaging, which requires precise knowledge of the co-

herence properties of the beam at the sample position [3, 4].

Such high degree of coherence is provided naturally by

the FEL process even when it is started by the incoherent

spontaneous emission. However, due to the stochastic na-

ture of the SASE FEL process, complete coherence cannot

be achieved. Effects such as large emittance values or re-

laxed focusing strengths in the undulator reduce the level of

coherence [5]. Therefore it is essential to quantify the FEL

performance in terms of the degree of coherence, so that the

feasibility of the proposed experiments can be evaluated.

We are carrying out our investigation on coherence of

the SwissFEL facility [2] at the shortest wavelength of 1

Ångstrom for the Aramis beamline, which has the lowest

transverse coherence growth rate during the FEL process

[6] due to the reduced diffraction and a beam emittance,

which is slightly larger than the diffraction limited ”emit-

tance” λ/4π of a photon beam. The exponential growth in

the radiation power is shown in Fig.1, which saturates at 45

m. The maximum undulator length is 55 m.

The time-dependent simulations are done with Genesis

1.3 [7]. We compute up to 60000 wavefronts at various lo-

cations along the undulator. Because transverse coherence

is mostly important for coherent diffraction imaging with a

tight focal spot at the experimental station, the wavefronts

are propagated further through a 100 m drift and then fo-

cused down to a sub-micron spot size with a focal length of
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Figure 1: Average radiation power along the Aramis undu-

lator for a resonant wavelength of 1 Ångstrom.

about 1m. These dimensions correspond approximately to

those of the Aramis experimental hall.

COHERENCE
A Self Amplifying Spontaneous Emission (SASE) FEL

can be regarded as a stochastic process, where a white noise

signal – the spontaneous emission – is amplified within a

narrow bandwidth around the central resonant frequency.

As such the coherence is limited, although the FEL process

increases the degree of coherence by slippage of the radia-

tion field in the forward direction (longitudinal coherence)

and diffraction (transverse coherence).

While the longitudinal coherence has been studied ex-

tensively elsewhere [8], the definition of the transverse co-

herence is somehow difficult to quantify. Experimentally,

the Young’s double slit experiment [9] provides some infor-

mation but from the theoretical point of view this definition

of coherence is inherently tied too much to the experimen-

tal configuration. Information is only obtained from parts

of the field, which passes through the slits or pin holes and

it is assumed that the field properties can be interpolated

over the entire radiation spot size.

From a statistical point of view the FEL amplification is

not a stationary process. The electron bunch can be short

and only a few spikes appear in the FEL pulse profile. This

could result in a higher contrast of a single shot double slit

interference patterns than what is obtained averaging over

many shorts. For the analysis in this paper we enforce a

stationary process by extending the bunch length with con-

stant electron slice parameters (e.g. current, emittance, en-

ergy spread), containing many spikes. Averaging over time

becomes valid and therefore multiple runs with different
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random seeds for the incoherent spontaneous radiation can

be avoided.
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Figure 2: Interference from two position r1 and r2 located

in the same transverse plane during a scattering process.

In a typical scattering experiment (see Fig. 2), the de-

tected signal depends on the mutual coherence function

[10]

Γ12(τ) =< E(�r1, t + τ)E∗(�r2, t) > , (1)

where the average is taken over the time t due to the station-

ary nature of the signal. Both longitudinal and transverse

coherence are accounted for by Γ12. It is a good approx-

imation for SASE FELs that the path length difference is

shorter than the cooperation length of the FEL [11] and

thus the field can be regarded as ”quasimonochromatic”,

resulting in the mutual optical intensity function (MOI)

J12 ≡ Γ12(0) [10]. Note that J11 is the mean intensity

at the position �r1. Normalization of the MOI defines the

complex coherence factor:

μ12 =
J12√
J11J22

. (2)

Because the amplitude information of the radiation field is

removed the complex coherence factor is a measure of the

phase relation in the radiation field between two points, and

takes a value of one for full and zero for vanishing coher-

ence.

STATISTICS OF POWER FLUCTUATION
The evaluation of the mutual optical intensity is numeri-

cally time-consuming due to the point-to-point calculation

over the wavefronts in many slices. Information about the

transverse coherence can however be derived from the sta-

tistical fluctuations in the radiation power with almost no

additional computational cost from the FEL simulations.

Because the starting signal of the SASE FEL is the

’chaotic’ signal of the incoherent spontaneous radiation,

the SASE FEL amplifies this ’white’ noise while preserv-

ing its stochastic nature of the signal. Therefore the fluc-

tuation of the instantaneous FEL power follows a Gamma

distribution [8]. The free parameter M of this distribution

is related to the variance by

< (P− < P >)2 >

< P >2
=

1
M

. (3)

The physical interpretation of M is the number of indepen-

dent modes over the sampling volume and corresponds to

the product of transverse and longitudinal modes number.

In the linear FEL regime there is a single longitudinal mode

and the normalized variance is a measure for the number

of independent, uncorrelated transverse modes. A single

mode (M = 1) corresponds to full transverse coherence,

while a higher mode content reduces the coherence. There-

fore the normalized variance can be taken as a measure for

the degree of transverse coherence.

From the high mode content of the spontaneous radia-

tion the FEL process selects lower order modes due to their

larger growth rate, reducing the mode content progressively

along the undulator. If the FEL is sufficiently long, a sin-

gle mode will dominate and enforce a negative exponential

distribution in the Gamma function with M = 1. However

the FEL process is limited by saturation, which can occur

before transverse coherence has been achieved.

Unfortunately at the saturation point and beyond the dis-

tribution in the power fluctuation is dominated by the lon-

gitudinal dynamics. This happens because the spike tends

to level out and follow a slower superradiant growth [12],

while the region between spikes still grows exponentially,

resulting in an effective larger number for the longitudinal

modes. This is reflected by the green curve in Fig. 3, which

shows that the normalized variance levels out at around 35

m and drops at larger disztances. Hence the power fluctua-

tion can be used as a measure of transverse coherence only

in the exponential regime of the FEL.

COMPLEX COHERENCE FACTOR
For a more consistent analysis of the transverse coher-

ence we evaluate the mutual optical intensity J12 and the

complex coherence factor μ12 using the wavefronts from

the simulations. Both functions μ12 and J12 are defined

in a 4-dimensional space, because they correlate pairs of
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Figure 3: Evaluation of the degree of coherence along the

Aramis undulator. The degree of coherence is calculated

following three different definitions: 3,6, and 4.
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Figure 4: Mutual Optical Intensity and Complex Coherence Factor (left and right plot, respectively) of the FEL radiation

field at the undulator exit (55 m) with respect to the undulator axis (r1 = 0).

points in the transverse plane. Fig. 4 shows the SwssFEL

data for one selected transverse plane, whereby one point

is constrained to the undulator axis (r1 = 0). The distri-

bution of μ12 is found to be wider than that of the MOI

indicating that there is a strong correlation in the wavefront

phase with significant amplitude. A measure for the degree

of coherence is the integration over r2 of the complex co-

herence factor
∫

μ12(0, �r2)d�r2, which defines a coherence

area. For the SwissFEL beamline Aramis at 1 Ångstrom it

is about 3 to 4 times larger than the FEL spot size around

saturation.

Using the coherence area as estimate of coherence has

the drawback that it is related to a fixed r1. A more general

expression is obtained by a integration over both r1 and r2,

weighted by the intensity I(r). The degree of coherence

can be given by the complex coherence factor,

ζ =
∫ |μ12(�r1, �r2)|2I(�r1)I(�r2)d�r1d�r2[∫

I(�r1)d�r1

]2 . (4)

A value of unity corresponds to full transverse coher-

ence. It has been shown that Eq. 4 is identical to the vari-

ance of the power fluctuations (Eq. 3) as long as the FEL

operates in the linear regime of exponential growth [13].

This is confirmed by the simulation results shown in Fig. 3

that the value of ζ agrees at 30 m (first blue square) with the

values from Eq. 3 (green line). ζ is not obscured by longitu-

dinal saturation effects of the radiation field. The coherence

has its maximum shortly before saturation and degrades in

the post saturation regime. It is slightly improved when the

radiation field is propagated and focused to a sub-micron

spot because high-order modes exhibit stronger diffraction

and a slightly different focal point , resulting in a larger

mode size at the target plane. The values for the complex

coherence factor ζ are shown in Tab. 1.

Although ζ is a fully consistent definition of transverse

coherence it is hard to establish a threshold which guaran-

tees sufficient coherence for a given experiment, e.g. coher-

ent diffraction imaging. μ12 correlates mainly the radiation

phases at two points in a transverse plane. Even for full

phase correlation is 100% the interference patterns might

show low contrast if the amplitudes of the field at these two

locations differ significantly. This problem emerges typ-

ically in the lense-less imaging with free-electron lasers.

To maximize the photon flux the radiation field has to be

focussed down to a size comparable to the object to be im-

aged.

MUTUAL COHERENCE FUNCTION
According to Wolf [14], it is possible to decompose the

mutual optical intensity function in to a unique set of co-

herent modes,

J12 =
∑

n

ηnΦ∗
n(�r1)Φn(�r2), (5)

where the mode amplitudes ηn have to be real and positive

because J11 ≥ 0 for all r1. The modes are sorted by the

mode number n and form a complete set of basis functions.

Because the modes are orthonormal, they can be consid-

ered as mutually incoherent. If only a single mode exists

the field is fully coherent. The degree of coherence can be

defined by

η =
ηmax∑

n ηn
(6)

We have determined the mutual optical intensity J12 at dif-

ferent undulator positions and at the target station from the

SwissFEL wavefroms in the way indicated in the ”Coher-

ence” section. We have then obtained the mode decompo-

sition (Eq. 5) following [4], briefly described below.

One can work with a freely chosen orthonormal basis

{χn} with
∫

χ∗
m(r)χn(r)dr = δnm. Determining {Φn} is

equivalent to solve the matrix eigenvalue problem

H�cp = ηp�cp (7)

where �cp ≡ (c1
p, c

2
p, . . .), Φp(r) =

∑
n cn

pχn(r), and the

matrix elements of H given by

Hpq =
∫

χp(�r1)J(�r1, �r2)χ∗
q(�r2)d�r1d�r2. (8)

This follows straightforwardly by multiplying Eq. 6 with

Φq(r1)χ∗
p(r2) and integrating over both planes. For the
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Evaluation Undulator Exit Focal Point

Point ζ η ζ η
30 m 38% 65% 49% 68%

40 m 65% 82% 70% 83%

50 m 59% 78% 64% 79%

55 m 53% 74% 59% 75%

Table 1: Degree of coherence, using the method of the

complex coherence factor ζ and the coherent mode ampli-

tude η for different undulator lengths.

computations we used the set of characteristic functions

of the two dimensional grid {nx�ex + ny�ey} on which the

wavefronts were already defined, and the eigenvalue prob-

lem (Eq. 7) was solved using MATLAB.

The calculations has been done for effective undulator

lengths of 30, 40, 50 and 55 m. The highest degree of co-

herence η was found with the dataset at 40 m, shortly be-

fore the point of saturation. The relative amplitude of the

fundamental mode is ηmax = 82 % and a rapid decrease

in amplitudeηn for the higher modes is observed. Fig. 5

shows the amplitude of the first 20 modes for the evaluation

point at 55 m. Similarly to the complex coherence factor ζ,

the amplitudes of the fundamental and low order modes in-

crease when propagated through the beam line optics , but

the growth is limited to less than 2% and is attributed to

artefacts of the numerical calculation. Only higher modes

are damped, which arise mostly from the numerical effect

that higher modes are spread out over the wavefront grid

and thus tend to average out. This effect becomes notice-

able for mode numbers above 1000.

Table 1 compares the degree of coherence ζ and χ, com-

puted following the two methods described. The method

based on power fluctuations is excluded because the results

are obscured by the longitudinal mode content at and af-

ter saturation. In general, the decomposition into coherent

modes yields higher degrees of coherence. η has also a

weaker dependence on the undulator length in the post sat-

uration regime with a relative drop of 10% compared to

16% of the complex coherence factor ζ.

CONCLUSION
We evaluated numerically the degree of coherence of the

hard X-ray beamline Aramis of the SwissFEL facility at 1

Ångstrom, using three different methods. All of them show

that the output of the FEL has a high degree coherence

and is suitable for coherent diffraction imaging without the

use of pin holes to enforce transverse coherence. For the

FEL user point of view the most practical method relies

on the decomposition into coherent modes, which yields

both the degree of coherence and the illumination function,

the latter needed to reconstruct the scattering object from

the diffraction pattern. The estimated degree of coherence

is higher than what obtained using the complex coherence

factor or the variance in the power fluctuation, because the
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Figure 5: Amplitudes for the 20 largest coherence modes

for the Aramis FEL, operating at 1 Ångstrom. Inserts are

showing the first two coherent eigenmodes at the SwissFEL

target station.

latter methods emphasize the incoherency in the tails of the

field distribution, which aren’t of much relevance for the

imaging process.

REFERENCES
[1] A.M. Kondratenko and E.L. Saldin, Part. Accl. 19 (1980)

207

[2] B.D. Patterson et al, New Journal of Physics 12 (2010)

035012

[3] L.W. Whitehead et al, Phys. Rev. Lett. 103 (2009) 243902

[4] S. Flewett et al, Opt. Lett. 34 (2009) 2198

[5] E.L. Saldin et al, Analytical Studies of Transverse Coher-
ence Properties of X-ray FELs, Proc. of the FEL 2007 Con-

ference, Novosibirsk, Russia (2007)

[6] E.L. Saldin et al, Opt. Comm. 186 (2000) 185

[7] S. Reiche, Nucl. Inst. & Meth. A429 (1999) 243

[8] E.L. Saldin et al, Opt. Comm. 148 (1998) 383

[9] R. Ichebeck et al, Nucl. Inst. & Meth. A507 (2003) 175

[10] J. W. Goodman, Statistical Optics, (Wiley, 2000, New York)

[11] R. Bonifacio et al, Phys. Rev. A 44 (1991) 3441

[12] R. Bonifacio and B.W.J. McNeil, Nucl. Inst. & Meth. A272
(1988) 280

[13] E.L. Saldin et al, Opt. Comm. 281 (2008) 1179

[14] E. Wolf, J. Opt. Soc. Am. 72 (1982) 343

MOPC20 Proceedings of FEL2010, Malmö, Sweden

162 X-ray and short wavelength FELs


