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Abstract 
The new approach for the SASE radiation properties 

calculation was proposed recently. It is based on the use 
of BBGKY chain of equations, adapted for FEL. In fact, it 
is the only known logically correct way to describe the 
SASE phenomenon. The two-time correlation function is 
necessary for calculation of averaged SASE spectrum. 
The solution of the correlation function equation for 
linear stage of SASE process is obtained. 

INTRODUCTION 
As it is well known the SASE FEL principle of 

operation is based on the amplification of the initial 
fluctuations which are present in the electron beam 
current density due to the discreteness of electrons. 
Therefore radiation of such FEL has stochastic nature and 
its parameters in a single shot can not be predicted. But 
averaged over many shots radiation properties obey some 
definite statistical laws which can be obtained by standard 
methods of statistical mechanics. It worth noting, that the 
averaging happens naturally in the experiment when one 
accumulates the data obtained in different shots. 

The regular approach to the averaging procedure which 
has been developed recently [1-3] is based on the 
BBGKY chain of equations. It allows for calculating of 
the beam current correlation function at the given moment 
of specially chosen time variable. To find many important 
radiation properties like averaged spectral density one 
needs to know the two-time correlation function. Similar 
to the BBGKY chain the two-time correlation function 
equation can be obtained by averaging of the continuity 
equation for the microscopic density distribution [4].  

In this paper we find the explicit solution of the two-
time correlation function equation at linear stage for the 
1-D case. 

Single Shot Radiation Field 
Let us first consider the FEL radiation field which is 

observed in a single shot. Vector potential of the field in 
paraxial approximation can be determined from the 
following expression: 
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where zt −=ξ  is the new time variable [1] and 

( )ξξ ,, zrj
r

r

 is the beam current density written as a 

function of this new time: 
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We assume that velocity of light 1=c . 
The single shot beam current density (2) can be 

expressed trough the microscopic density distribution 
(Klimontovich function) in the single-particle phase plane 

( )Δ,z  [4]: 
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where ξγθ 2
//2=  is scaled time variable, 0γδγ=Δ  is 

energy deviation, and  ( )00 ,rrX &rr=   is a 4-D vector of 

initial transverse coordinates and angles. We assume that 
transverse motion is not influenced by longitudinal one 
and particles move along prescribed trajectories. One can 
consider (3) as continuous set of distributions marked 
with continuous index X . So, that each transverse 

trajectory ( )zXrr ,
rr =  has its own distribution. There 

also exists inverse mapping ( )zrrXX ,, &
rr=  with 

Jacobian 
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For the electron beam moving in undulator the 
transverse current density can be written in the following 
way  
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where ( )zkKV wsin1−
⊥ = γ  is transverse velocity of 

electron wiggling motion ( K - undulator deflection 

parameter, wk - undulator wave number) and 

( ) 2
||

1 21 γ≈− −
zV  ( ||γ  - relativistic factor for the electron 

longitudinal velocity). The longitudinal distance between 

two particles for the given θ is ( ) 11 −− zV  times more, 
that this distance for given t. Therefore this factor appears 
in Eq. (4). 

Substituting (4) in (1) one can obtain explicit 
expression of single-shot radiation field trough the 
microscopic density distribution (3) 
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Radiation Properties Averaged over Shots 
Many of the important radiation properties like power 

and averaged spectral density can be determined from the 
field correlation function 

( ) ( ) ( ) ( )222111222111 ,,,,,,,, ξξ zrAzrAtzrAtzrA
rrrr =

(5) 

For the coasting beam this function depends only on the 

time difference 12 tt −  or equivalently on 12 ξξ − : 

( ) ( ) ( )122211222111 ,,,,,,,, ξξξξ −= zrzrCzrAzrA
rrrr

 (6) 

In this case the radiation spectral density at given 

observation point ( )zr ,
r

 can be obtained by applying 
Fourier transformation to the correlation function (6) by 
the time difference. 

After substitution of the explicit expression for the 
radiation field (1) with the beam current density (4) in the 
correlator (6) it becomes evident that calculation of 
correlator requires calculation of the averaged product of 
microscopic density distributions (3) ( ) ( )21 ,2,1 θθ ΝΝ  

where both multipliers are taken at different moments of 
time.  

This product can be expressed as a sum of one-particle 
two-time and two-particle two-time distribution functions 
[4] 
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where N  is the total number of electrons (or for the 
coasting beam - the number of electrons per unit length). 

Both functions obey similar equations but have 
different initial conditions 
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where ( )1,1 θF  is one-particle one-time and 

( )1
)2( ;2,1 θf  is two-particle one-time distribution 

functions. 
In turn the two-particle two-time distribution function 

can be separated in two parts 

( )( ) ( ) ( ) ( )2122121
2

2 ,2;,1,2,1,2;,1 θθθθθθ GFFf +=  (9) 

where ( )212 ,2;,1 θθG  is so called two-particle two-time 
correlation function. 

For the coasting beam ( )1,1 θF  does not depend on 
time, and the first term of Eq. (9) does not give any 
contribution to the correlator (6). All the required 
information about FEL coherent radiation can be obtained 
from the second term. It worth noting that contribution of 
the one-particle two-time distribution function (first term 
of Eq. 7) corresponds to spontaneous emission. 

TWO-TIME CORRELATION FUNCTION  

Correlation Function Equation 
The two-time correlation function obeys the following 

equation [4] 
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where ( ) ( )[ ]XzXz ,221,, 2
// βγν Δ−Δ+=Δ  is 

longitudinal velocity and ( )2,1Φ  is the two-particle 
interaction force [1]. The unit length for longitudinal 

coordinates is ww k12 =πλ . 
This equation has to be solved with the initial condition 

 ( ) ( )1212 ,2,1|,2;,1
21

θθθ θθ GG ==   (11) 

where ( )1,2,1 θG  is one-time correlation function. 
For simplicity we restrict our further consideration to 

the coasting beam and 1-D case. It can be applied for both 
the model of charged sheets and the thin beam model. In 
this case Eq. (10) can be written in the following form 
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where 21 θθτ −= . 

Solution at Linear Stage 
Eq. (12) can be solved at linear stage when the 

distribution function ( )Δ,zF  does not depend on z . 

Applying Laplace transformation by τ , 1z and 2z  and 
taking into account initial condition (11) one obtains the 
following equation: 
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The further simplification can be done by introducing 
of the correlation function moments 

( ) ( )∫ ΔΔΔΔΔΔ= 2122112121, ,;,, ddssGssg mn
mn   

( ) ( )∫ ΔΔΔΔΔ= 2121122121
,

2 ;,,,, ddpssGpssG mnmn  

These moments obey the chain of equations which can 
be obtained by integrating of Eq. (13) by energy. For the 
cold beam when ( ) ( )Δ=Δ δF  this chain is reduced to the 
closed system of two equations 
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This system can be easily solved 
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where ( )210,0 , ssg  and ( )210,1 , ssg  can be found by the 

similar approach applied to the one-time correlation 
function equation [2] 
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Introducing the poles of Laplace image (14) 

( ) ( )111112,1 2 sissNsisp μ±−=Φ±−=   

and making inverse Laplace transformation by p  one 
obtains  
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To make inverse Laplace transformation over 1s  and 

2s  one needs to know the poles of Eq. (15) which can be 
found from the dispersion equation 

0),( 21 =ssD     

It can be shown that this equation is equivalent to the 
set of two equtions 
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where ω  is some arbitrary complex number. 
It is convenient to introduce the following variables 

21 sss +=  and ( ) 221 ssik z −= . Then the inverse 

Laplace transformation of (15) over s  gives the 

dependence of 0,0
2G  on ( ) 221 zzz +=  and the inverse 

Fourier transformation over zk  gives its dependence on 

21 zzx −= .  
Using inverse Laplace transformation of Eq. (15) and 

assuming that the gain length 1>>gL  one can determine 

asymptotic behaviour of the correlation function for large 

gLz >>  
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where ( )zks~  and ( )zkω  are the solutions of Eq. (16). It 

can be easily shown that ( ) ( )zz kk ωω −=− and 

( ) ( )zz ksks ~~ =− . 
To obtain the final expression for the correlation 

function one needs to calculate the following integral  
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As the exponent argument contains large factor z it can 
be done by saddle-point technique. For this purpose one 
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needs to find extremal points of the exponent argument 
( ) ( ) ( ) xikkizksk zzzz +−= τωϕ ~  at which ( ) 00 =′ k

zkϕ . 

Applying this technique one gets the following 
asymptotic expression for the correlation function 
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The Charged Sheets Model 
As an example let us consider commonly used 1-D FEL 

model of charged sheets [6]. In the frame of this model 
one can write the following expression for the interaction 
force 
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where 1<<ρ  is the Pierce parameter. 
Solution of dispersion equations (16) for this 

interaction force can be obtained by perturbation 
technique. Most simply it can be written in implicit form: 
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where δ is some parameter which is assumed to be small. 
For simplicity we shell find correlation function only 

for 0=x . There are no significant difficulties to find it 
for general case but the resulting expression come out 
cumbersome.  

It can be easily shown that at the extremal point 

z
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9
0 −= . Taking this into account and substituting 

(19) in (18) one obtains 
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where ρ321=gL  is the gain length. The Fourier 

transformation of (20) by τ  is proportional to current 
spectral density at given point z in undulator 
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where the spectral width  gzL23=ωσ is the same as 

in conventional 1-D FEL theory [6]. 

CONCLUSION 
We have shown that calculation of the averaged 

spectral density of the SASE FEL radiation requires 
calculation of the two-particle two-time correlation 
function. We also obtained explicit solution for this 
function in a simple 1-D FEL model. 
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