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Abstract

The new approach for the SASE radiation properties
calculation was proposed recently. It is based on the use
of BBGKY chain of equations, adapted for FEL. In fact, it
is the only known logically correct way to describe the
SASE phenomenon. The two-time correation function is
necessary for calculation of averaged SASE spectrum.
The solution of the correlation function eguation for
linear stage of SASE process is obtained.

INTRODUCTION

As it is wel known the SASE FEL principle of
operation is based on the amplification of the initial
fluctuations which are present in the eectron beam
current density due to the discreteness of eectrons.
Therefore radiation of such FEL has stochastic nature and
its parameters in a single shot can not be predicted. But
averaged over many shots radiation properties obey some
definite statigtical laws which can be obtained by standard
methods of statistical mechanics. It worth noting, that the
averaging happens naturaly in the experiment when one
accumul ates the data obtained in different shots.

The regular approach to the averaging procedure which
has been developed recently [1-3] is based on the
BBGKY chain of equations. It allows for calculating of
the beam current correlation function at the given moment
of specially chosen time variable. To find many important
radiation properties like averaged spectral density one
needs to know the two-time correlation function. Similar
to the BBGKY chain the two-time correlation function
equation can be obtained by averaging of the continuity
equation for the microscopic density distribution [4].

In this paper we find the explicit solution of the two-
time correlation function equation at linear stage for the
1-D case.

Sngle Shot Radiation Field

Let us first consider the FEL radiation field which is
observed in a single shot. Vector potential of the field in
paraxia approximation can be determined from the
following expression:
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where £ =t—2Z is the new time variable [1] and

Tg(F,Z,f) is the beam current density written as a
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function of this new time:

1:(F,28)=1[F.z2+¢) @

We assume that velocity of light c=1.

The single shot beam current density (2) can be
expressed trough the microscopic density distribution
(Klimontovich function) in the single-particle phase plane

(z.A) [41:

N(z, A, X;0)=Y 8(z— 29 (0))s(a - A¥(0))s(X — X))
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where @ = 2)7¢ is scaled time variable, A = dy/y, is

energy deviation, and X = (Q,ﬁ,) is a 4-D vector of
initia transverse coordinates and angles. We assume that
transverse motion is not influenced by longitudinal one
and particles move along prescribed trgjectories. One can
consider (3) as continuous set of distributions marked
with continuous index X . So, that each transverse

trajectory T =7(X,Zz) has its own distribution. There
aso exists inverse mapping X = X(f,r;,z) with

ol T,
Jacobian (E f) =1
o\r,r
For the dectron beam moving in undulator the
transverse current dendty can be written in the following

way

j.(F.20)=] 1V§/ N(zA X (. F,zko)adi (@)

where V| = Kytsin(k,z) is transverse velocity of
eectron wiggling motion (K - undulator deflection
parameter, kW undulator wave number) and

@-v,)*'= 27”2 (7, - relativistic factor for the electron
longitudina velocity). The longitudina distance between

two particles for the given @is (1—VZ)_1 times more,
that this distance for given t. Therefore this factor appears
in EQ. (4).

Subgtituting (4) in (1) one can obtain explicit
expression of single-shot radiation field trough the
mi croscopic density distribution (3)
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Radiation Properties Averaged over Shots

Many of the important radiation properties like power
and averaged spectra dendty can be determined from the
field correlation function

<A(F1’ Zi’tl)A(rZ’ 22’t2)> = <A(F1’ Ziifl)A(Fz’ 22’§2)>
©)

For the coasting beam this function depends only on the
time difference t, —t, or equivaentlyon &, —¢;:

<A(F1’ Ziifl)A(Fz’ 22’§2)> = C(Fv 4, F21 22’§2 _fl)
(6)

In this case the radiation spectral density at given
observation point (F',z) can be obtained by applying
Fourier transformation to the correlation function (6) by
the time difference.

After subgtitution of the explicit expression for the
radiation field (1) with the beam current density (4) in the
correlator (6) it becomes evident that calculation of
correlator requires calculation of the averaged product of
microscopic density distributions (3) (N(L6,)N(2,6,))
where both multipliers are taken at different moments of
time

This product can be expressed as a sum of one-particle
two-time and two-particle two-time distribution functions

(4]

(N(1,6,)N(2,6,)) = NF,(1,6,;2,6,)+ N(N —1)x

@ ()
X fz (1191;2192)
where N is the total number of eectrons (or for the
coasting beam - the number of eectrons per unit length).
Both functions obey similar equations but have
different initial conditions

F.16:26,),., =F16)s1-2)

LoLe26,),, = 190206)

©)

FLE,) is
f@(1,2,6,) is twopartide onetime distribution
functions.

In turn the two-particle two-time distribution function
can be separated in two parts

where one-paticle onetime and

1,7(16,26,)=F16)F(2,6,)+G,16,;26,) (9
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where G,(1,6,;2,6,) is o called two-particle two-time
correlation function.
For the coasting beam F(1,6,) does not depend on

time, and the first teem of Eq. (9) does not give any
contribution to the correlator (6). All the required
information about FEL coherent radiation can be obtained
from the second term. It worth noting that contribution of
the one-particle two-time distribution function (first term
of Eq. 7) corresponds to spontaneous emission.

TWO-TIME CORRELATION FUNCTION

Correlation Function Equation

The two-time correlation function obeys the following
equation [4]

oF(2)
oA,

013G, (36,526, )443}

(10)

o 0
(ael+azlv1]62(wl;2,ez):-N

v(z A, X)=[1+2a-2208(z, X)] s
longitudina velocity and CI)(LZ) is the two-particle
interaction force [1]. The unit length for longitudina

coordinatesis A, /27 =1/k,, .
This eguation hasto be solved with theinitial condition

where

Gz(lv 6,2, 02)'(91:922 G(:LZ' 01) (11)
where G(1,2,6,) is one-time correlation function.

For simplicity we restrict our further consideration to
the coasting beam and 1-D case. It can be applied for both
the model of charged sheets and the thin beam modd. In
this case Eq. (10) can be written in the following form

P 0
[aT + (l+ 2A1)821)GZ(211 Al! ZZ’ AZ; T) =

Z oo

= SNSCF@A)] [0z - 25240 20, ),
o (12)

where 7=6,-6,.

Solution at Linear Stage

Eg. (12) can be solved at linear stage when the
distribution function F(z,A) does not depend on 2.
Applying Laplace transformation by 7,7 and Z, and

taking into account initial condition (11) one obtains the
following equation:
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(p+(1+ ZAl)S.)Gz(S.'Al'Sz'Az; p)_G(S.'AMSz'Az)z

= _Ncp(sl)aaA (Al)IGZ(S_,A3:SZlA2;p)dA3

1

(13)

The further simplification can be done by introducing
of the corrélation function moments

Ol S)= [AIATG(s,A,;s,,A, JdA A,

GI"(s,,5,, p) = [ AATG, (5,44, S;; p)dA,dA,

These moments obey the chain of eguations which can
be obtained by integrating of Eq. (13) by energy. For the
cold beam when F(A) = §(A) this chain isreduced to the
closed system of two equations

(P+5)G°(s.,S,: P)+25G;°(S,5; P) = Go(S1,S,)

(P+8)G;°(5,8,; P)= G(8,8)+ NO(5)G5°(s,,S,; p)

This system can be easily solved

2Ns®
GY(s,,; p)[1+ orst ;;l)] -
1 2s

:(F)TSA)QO’O(S‘,SZ)_WQLO(SJSZ)

(14)

where 90,0(31,32) and 91,0(51,32) can be found by the

similar approach applied to the onetime correlation
function equation [2]

S 5@(s)+5,0(s,)
90,0(51152)_N(51+52){D[1+2N(51+52)2j_1]
_1 ofs) SP(s)-5(s,)
gl,O(%’SZ)_ D (51+SZ)2 £1+ 2N (%4.52)2 )
where
D(s.s,) =[1+2N sla><sl>+sza><sz>j2_16 N255,®(s (s,
, (s+s) (s,+s,)

Introducing the poles of Laplace image (14)

P, =S +i/2Ns®(s ) = -5 +iu(s)
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and making inverse Laplace transformation by P one
obtains

1 T
G (s,5,17) = g§G§‘°(Sﬂ s, ple’dp=

es{com%)f)go,o(shsz)—zﬁng,()(spsz)]

(15

To make inverse Laplace transformation over S and

S, one needs to know the poles of Eq. (15) which can be
found from the dispersion equation

D(s,s,) =0

It can be shown that this equation is equivalent to the
set of two egutions

1+M=0A1+m327q)(5;)=0 (16)
(~iw+s) (iw+s,)
where @ issome arbitrary complex number.

It is convenient to introduce the following variables
s=s+s, ad ik, =(s, —s,)/2. Then the inverse
Laplace transformation of (15) over < gives the
dependence of GJ° on z=(z +2,)/2 and the inverse
Fourier transformation over K, gives its dependence on
X=2-12,.

Using inverse Laplace transformation of Eq. (15) and
assuming that the gain length L, >>1 onecan determine

asymptotic behaviour of the correlation function for large
z>> L

17

(TN

GO,O ,k 7) = _eS(kz)Z—la)(kz)‘r
2 (Z z T) AN

where S(K,) and w(k,) are the solutions of Eq, (16). It

can be easly shown tha @(-k,)=-w(k,) and

§(_ kz): §(kz) :

To obtain the fina expression for the correlation
function one needs to cal culate the following integral

L

0,0 ) 1 S(k, )z-iw(k, )r+ik,x
GX°(z,x7)= N E_[e dk,

As the exponent argument contains large factor Z it can
be done by saddle-point technique. For this purpose one
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needs to find extrema points of the exponent argument
(p(kz)z §(kz)z—ia(kz)z'+ikzx at which (Pl;(ko)zo'
Applying this technique one gets the following
asymptotic expression for the correlation function

w(ko)
GX°(z,x,7)~ e ”i +cc. (18)
aN 2z | ¢ (k, )
The Charged Sheets Model

As an examplelet us consider commonly used 1-D FEL
model of charged sheets [6]. In the frame of this model
one can write the following expression for the interaction
force

S
1+s

N®(s) = —8p°

2

where p << 1 isthe Pierce parameter.

Solution of dispersion equations (16) for this
interaction force can be obtained by perturbation
technique. Most simply it can be written in implicit form:

ok,)=1+6

_ NI
k )=2pJ3——0 19
S(k,)=2p+/3 185 (19)

1260 L
3 32

where ¢ is some parameter which is assumed to be small.
For simplicity we shdl find corrdation function only
for Xx=0. There are no significant difficulties to find it
for genera case but the resulting expression come out
cumbersome.
It can be easily shown that at the extremal point

.97
50 =—l T’Z—. Taking thisinto account and substituting
VA

(19) in (18) one obtains
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z 372
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9 9 1 27 T .
G20 z,O;r:e € |2 co r—smr]
:(20:7) 2N 37 |2, s7) 323z ©)

(20)

where L :]/ 2\/§p is the gain length. The Fourier

transformation of (20) by 7 is proportional to current
spectral density at given point Z in undulator

(-1

2
20,

(1)

2
e “ te

e
18N

where the spectral width o, = ,/3/22 isthe same as
in conventional 1-D FEL theory [6].

CONCLUSION

We have shown that calculation of the averaged
spectral densty of the SASE FEL radiation requires
calculation of the two-particle two-time correlation
function. We also obtained explicit solution for this
function in asimple 1-D FEL model.
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