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Abstract

A single-pass high-gain x-ray free electron laser (FEL)
calls for a high quality electron bunch. In particular, for a
seeded FEL amplifier and for a harmonic generation FEL,
the electron bunch initial energy profile uniformity and
peak current uniformity are crucial for generating an FEL
with a narrow bandwidth. After the acceleration, compres-
sion, and transportation, the electron bunch energy profile
entering the undulator can acquire temporal non-uniformity
both in energy and local density. We study the effects of the
electron bunch initial energy profile non-uniformity and lo-
cal density variation on the FEL performance. Intrinsically,
for a harmonic generation FEL, the harmonic generation
starts with an electron bunch having energy modulation as
well as density bunching at the previous stage FEL wave-
length and its harmonics. Its effect on the harmonic gener-
ation FEL in the radiator is then studied.

Introduction

Free Electron Laser (FEL) is perceived as one of the can-
didates for the fourth generation light source. Success in
commissioning the world’s first x-ray (1.5-15Å) FEL – the
LINAC Coherent Light Source (LCLS) – at SLAC National
Accelerator Laboratory opens the gate for new science [1].
Further improving the FEL spectrum bandwidth is urged
by various potential users. One of the possibilities to gen-
erate narrow bandwidth FEL is to invoke a coherent seed
laser to start the FEL process, which is generally referred
to as a seeded FEL. With a coherent seed laser, the radi-
ator can set to have the resonant wavelength the same as
the seed laser to simply form a FEL amplifier or an Optical
Klystron (OK) [2]. An OK has two undulators with a mag-
netic buncher in between. For an OK, indeed the radiator
can have the resonant frequency as one of the harmonics of
the seed laser. In such an operation mode, a Harmonic Gen-
eration Free Electron Laser (HGFEL) can be configured
[3, 4]. Due to the fact that the buncher between the two
undulators will rotate the phase space on the seed wave-
length scale, the electron bunch entering the radiator will
have multi-frequency components in its energy spectrum.
We investigate its impact on the radiator FEL performance,
in particular the FEL bandwidth from this multi-frequency
energy spectrum. In general, the electron bunch generated
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from the photoinjector has a very small energy spread and
small emittance. During the acceleration, bunch compres-
sion, and transportation, the electron bunch will experience
the RF curvature, the second order effect in the chicane,
and collective effects, which will all lead to a nonuniform
energy profile [5]. In addition, the electron bunch is subject
to microbunching instability [6]. Thus, the electron bunch
entering the undulator can have an energy modulation with
multiple frequencies. Such energy modulation will impact
the FEL performance and affect the FEL bandwidth. Stud-
ies have been conducted for an initial energy modulation
[7, 8]. In this paper, we consider both the energy profile
non-uniformity as well as local density non-uniformity on
the free electron laser (FEL) performance for a FEL ampli-
fier as well as for a harmonic generation FEL.

Vlasov-Maxwell Analysis for an Initial Value
Problem

For a FEL amplifier, the FEL process starts from a co-
herent seed; while for an optical klystron [2] and (high-
gain) harmonic generation FEL [4, 9, 10], the FEL radi-
ation in the radiator starts from coherent emission from
a microbunched electron bunch. Nevertheless, the coher-
ent emission once generated will be decomposed into the
FEL guided modes and will be amplified due to the same
FEL process. The FEL amplification process by an electron
bunch with multi-frequency energy spectrum is the same
and applicable to all these difference FEL configurations.
Hence in the following, let us formulate the FEL start-up
and evolution process when the electron bunch has energy
non-uniformity.

To analyze the start-up of a seeded FEL amplifier we use
the coupled set of Vlasov and Maxwell equations which de-
scribe the evolution of the electrons and the radiation fields
[11]. This approach is used as well for the Self-Amplified
Spontaneous Emission (SASE) FEL [12]. We will work
with a one-dimensional system in this section.

Vlasov-Maxwell Equations We follow the analysis
and notation of Refs. [12, 11]. Dimensionless variables
are introduced as Z = kwz, θ = (k0 + kw)z − ω0t, where
k0 = 2π/λ0, ω0 = k0c, and kw = 2π/λw with λ0 being
the radiation wavelength, λw being the undulator period,
and c being the speed of light in vacuum. We also intro-
duce p = 2(γ − γ0)/γ0 as the measure of energy devia-
tion, with γ the Lorentz factor of an electron in the elec-
tron bunch, and γ0 the resonant energy defined by λ0 =
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λw(1 + K2/2)/(2γ20), for a planar undulator, where the
undulator deflecting parameter K ≈ 93.4Bwλw with Bw

the peak magnetic field in Tesla and λw the undulator pe-
riod in meter. The electron distribution function ψ(θ, p, Z)
is normalized, i.e.,

∫
ψ(θ, p, Z)dθdp = 1, with ψ0(θ, p, Z)

describing the slow varying unperturbed component. The
FEL electric field is written as E(t, z) = A(θ, Z)ei(θ−Z)

with A(θ, Z) being the slow varying envelope function.
The one-dimensional linearized Vlasov-Maxwell equa-

tions are,

∂ψ

∂Z
+ p

∂ψ

∂θ
− 2D2

γ20

(
Aeiθ +A∗e−iθ

) ∂ψ0

∂p
= 0, (1)

and,
(
∂

∂Z
+

∂

∂θ

)

A(θ, Z) =
D1

γ0
e−iθ

∫
dpψ(θ, p, Z), (2)

where in SI units, D1 = eawn0[JJ ]/(2
√
2kwε0) and

D2 = eaw[JJ ]/(
√
2kwmc

2), with e and m being the
charge and mass of the electron; ε0 ≈ 8.85 × 10−12 F/m
being the vacuum permittivity; n0 being the electron bunch
density in units of 1/m3; and [JJ ] = J0[a

2
w/2(1 + a2w)] −

J1[a
2
w/2(1 + a2w)] where the dimensionless rms undulator

parameter aw ≡ K/
√
2 and J0(x) and J1(x) are the zeroth

and first order Bessel functions.

Initial Energy Imperfectness–General Solution

To model an energy imperfectness in the electron bunch
coming into the undulator, we assume that the initial energy
distribution function is

ψ0 = δ[p+ g(θ0)] = δ[p+ g(θ − pZ)], (3)

where g(θ0) is a general function.
The general solution is [8]

f(θ, s) = f(−∞, s) +

∫ θ

−∞
dθ′e

−s(θ−θ′)+
∫

θ

θ′
i(2ρ)3

[s−ig(θ′′ )]2
dθ′′

(4)

×
⎡

⎣A(θ′, 0)
{

+
D1

γ0
B̃(θ′, s)

}

+
D1

γ0

∑

j

e−iθjδ(θ′ − θj)

s− ig(θj)

⎤

⎦,

which relates to A(θ, Z) via Laplace transform, i.e.,

f(θ, s) =

∫ ∞

0

dZe−sZA(θ, Z). (5)

Likewise, we have introduced

B̃(θ, s) =

∫ ∞

0

dZe−sZB(θ, Z), (6)

for the pre-microbunched component, which is related to
the bunching factor, b, as

b ≡
∣
∣
∣
∣
1

2π

∫ π

−π

dθ

∫
dpe−iθψ0(θ, p)

∣
∣
∣
∣

≡
∣
∣
∣
∣
1

2π

∫ π

−π

dθB(θ)

∣
∣
∣
∣ . (7)

Notice that, in the square brackets in Eq. (4), the first
term A(θ, 0) characterizes the initial seed for a seeded
FEL, the second term models a pre-microbunched electron
bunch, while the third term models the SASE FEL. In the
following, let us focus on a seeded FEL, so that the second
term and third term in the square brackets will be ignored
in the derivation.

Initial Energy Modulation–an Example

In this section, the general function g(θ) as in Eq. (3)
characterizing the nonuniform energy profile is represented
as a Fourier series as in the following. Indeed, for electron
bunch experienced microbunching instability, or in the har-
monic generation FEL as explained above and detailed in
the following Section , there can be an energy modulation
along the electron bunch as

γ = γ0 +

∞∑

m=1

εm sin[ωm(t− t0)], (8)

where ωm characterizes the mth component of the energy
modulation. The initial energy distribution function is then

ψ0 = δ

[

p+

∞∑

m=1

ηm sin(ωηmθ0)

]

, (9)

where ηm ≡ 2εm/γ0 and ωηm ≡ ωm/ω0. For such a
sinusoidal modulation, we have

∫ θ

θ′

i(2ρ)3
[

s− i
∞∑

m=1
ηm sin(ωηmθ

′′)
]2 dθ

′′≈ i(2ρ)3(θ − θ′)
s2

+

∞∑

m=1

2ηm(2ρ)3 [cos(ωηmθ) − cos(ωηmθ
′)]

ωηms
3

, (10)

to the leading order in ηm.

The FEL Solution For a seeded FEL, let us throw
away the initial value term, the pre-microbunched term as
well as the SASE term, and keep only the seed in Eq. (4).

f(θ, s) ≈
∫ θ

−∞
dθ′A(θ′, 0) (11)

×e
−s(θ−θ′)+ i(2ρ)3(θ−θ′)

s2
+

∞∑

m=1

2ηm(2ρ)3 [cos(ωηmθ)−cos(ωηmθ′)]
ωηms3

.

The inverse Laplace transform then gives us the FEL elec-
tric field slow-varying envelope function as

A(θ, Z) =

∫

c

ds

2πi
esZf(θ, s)

≈E0ω0
eiπ/12+W2α0(θ−Z/3+i5/3/6)2/[(1+W)ω2

0 ]

√
2α0(1 +W)Z/ρ

×ei�e
i1/32ρZ+

3(θ−Z/3)ρ
2Z − i1/39(θ−Z/3)2ρ

2Z −
∞∑

m=1

i2ηm cos(ωηmθ)

ωηm

,(12)
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where

�≡
∞∑

m=1

2ηm
ωηm

e
− ω2

0
ω2
ηm

4α0(1+W) cos

[W(θ − Z/3 + i5/3/6)ωηm

1 +W
]

,

(13)
and

W ≡ 9i1/3ρω2
0

2α0Z
. (14)

In getting the above solution, we assume an initial Gaussian
seed,

E(t, z = 0) = E0e
−iω0t−α0t

2

= E0e
iθ−θ2α0/ω

2
0

=⇒ A(θ, 0) = E0e
−θ2α0/ω

2
0 , (15)

where α0 = 1/(4σ2
t0) with σt0 being the initial seed rms

pulse duration.

Impact on a Seeded FEL

The work developed in the previous sections is sufficient
to study a seeded FEL amplifier when the electron bunch
has nonuniform energy profile. Yet, for a harmonic gener-
ation FEL or an optical klystron configuration, there is no
initial radiation seed, but rather the FEL will start from a
premicrobunched electron bunch. In fact, this can be done
by keeping the pre-bunched term (given in the curly brack-
ets) and throw away the seed term and the SASE term in
Eq. (4).

Electron energy profile into the radiator Since we
are working with a cold electron bunch without intrinsic
energy spread, the phase space distribution function at the
exit of the modulator in a HG FEL will be

δ(δγ −Δγ sin θ), (16)

where δγ ≡ (γ − γ0)/γ0 with γ0 as the electron cen-
troid energy, and δ(x) is the Dirac delta-function. After
the buncher, the phase space distribution is then

δ

[

δγ −Δγ sin

(

θ − dθ

dγ
δγ − θ0

)]

, (17)

where dθ/dγ characterizes the buncher strength and θ0 for
an overall phase shift.

Based on the reversion of series method [13], δγ is ready
to be expressed as a Fourier series,

δγ =

∞∑

m=1

am sin[m(θ − θ0)] ≡
∞∑

m=1

am sin(mΘ), (18)

where the Fourier coefficient is calculated as [8]

am =
1

π

∫ π

−π

∞∑

n=1

Δγn

n!

dn−1 sinn
(
− dθ

dγx+Θ
)

dxn−1

∣
∣
∣
∣
∣
∣
x=0

× sin(mΘ)dΘ

=
2

π

∞∑

n=1

Δγn

n!

1

(2i)n+1

×
n∑

k=0

ckn(−)n−k

[

i(2k − n)

(

− dθ

dγ

)]n−1

×
[
ei(2k+m−n)π − 1

i(2k +m− n)
− ei(2k−m−n)π − 1

i(2k −m− n)

]

. (19)

As mentioned above, assuming that the radiator is reso-
nant at frequency ω0 which is the lth-harmonic of the first
undulator–the modulator–fundamental frequency, then we
can rewrite Eq. (19) according to Eqs. (8) and (9), we have

⎧
⎪⎪⎨

⎪⎪⎩

ωm = mω0

l
ωηm = m

l
εm = am
ηm = 2am

γ0

. (20)

Combining Eqs. (20) and (12), one can estimate the impact
on the FEL bandwidth from the energy modulation gener-
ated in the modulator.

Initial Density Modulation

The initial energy modulation is described as in Eq. (18),
yet there is also initial density modulation. Integrating the
energy part in the distribution function in Eq. (17), we have
the bunching factor introduced [4], i.e.,

F(Θ) ≡
∫
δ

[

δγ −Δγ sin

(

Θ− dθ

dγ
Δγ

)]

dδγ

= 1 + 2
∞∑

n=1

Jn

(

−ndθ
dγ

Δγ

)

cos (nΘ)

≡ F0 +

∞∑

n=1

Fn cos (nΘ) . (21)

Notice that, according to the definition in Eq. (7), the am-
plitude of the density modulation is twice of the bunching
factor bn at each harmonics, i.e.,

|Fn| = 2bn ≡ 2

∣
∣
∣
∣
1

2π

∫ π

−π

dΘe−inΘ (22)

×
∫
δ

[

δγ −Δγ sin

(

Θ− dθ

dγ
Δγ

)]

dδγ

∣
∣
∣
∣ .

In the HG FEL configuration, the radiator is resonant to a
certain harmonic of the modulator radiation frequency. As-
suming that the radiator is resonant at the m-th harmonic,
then the quantity B(θ) introduced in Eq. (7) is

B(θ) ≡
∫
e−imΘmodδ

[

δγ −Δγ sin

(

Θmod − dθmod

dγ
Δγ

)]

dδγ

=
Fm

2
+ oscillating terms. (23)

Therefore, B̃(θ, s) introduced in Eq. (6), is then

B̃(θ, s) =

∫ ∞

0

e−sZ Fm

2
dz =

Fm

2s
, (24)
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with all the oscillating terms thrown away.

The FEL Solution For a pre-microbunched FEL, let
us throw away the initial value term, the seed as well as the
SASE term, and keep only the pre-microbunched term in
Eq. (4).

f(θ, s) ≈ D1

γ0

∫ θ

−∞
dθ′B̃(θ′, s) (25)

×e
−s(θ−θ′)+ i(2ρ)3(θ−θ′)

s2
+

∞∑

m=1

2ηm(2ρ)3 [cos(ωηmθ)−cos(ωηmθ′)]
ωηms3

.

The inverse Laplace transform then gives us the FEL elec-
tric field slow-varying envelope function as

A(θ, Z) =

∫

c

ds

2πi
esZf(θ, s)

≈ D1Fm

2γ0

∫ ∞

0

dξH (θ, ξ, Z, s, η) , (26)

with the function H (θ, ξ, Z, s, η) approximated as

H (θ, ξ, Z, s, η) ∼= e−iπ/12

2
√
2πZρ

eM, (27)

with

M = i1/32ρZ − i1/39ρ

(

ξ − Z

3

)2 1− i−1/3

4Zρ

2Z
(28)

−
∞∑

m=1

i2ηm {cos(ωηmθ)− cos[ωηm(θ − ξ)]}1−
3i−1/3

4Zρ

ωηm

.

Discussion

As a conclusion, in this paper, we study the effect on a
seeded FEL amplifier performance due to an initial energy
non-uniformity when the electron bunch enters the undula-
tor. Such non-uniformity can come from the RF curvature,
the collective effect induced microbunching instability, and
also generic energy modulation in a HG FEL. We then dis-
cuss the influence on the FEL due to the generic energy
modulation in a HG FEL as well as the impact from an
initial density local non-uniformity.
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