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Abstract
    Several years ago Andrews and Brau presented a two-
dimensional theory for the production of coherent Smith-
Purcell radiation by an initially continuous beam.  An 
essential component of their analysis was the dispersion 
relation for a lamellar grating (i.e., rectangular profile) 
relating frequency and axial wave number k. Both 
simulations and an experiment performed at CESTA 
using a wide beam have confirmed the validity of their 
approach.  However, all gratings are three-dimensional 
objects, and one may ask what modifications of the 
theory might be necessary.  We present here our solution 
to the problem, which assumes a progressive wave in the 
direction of the grooves, with wave number q.  A 
surprisingly simple modification of the Andrews and 
Brau 2-D dispersion relation is found.  We have 
extensively tested our theory, both with simulations 
using the 3-D PIC code "MAGIC", and with 
measurements of the properties of the surface wave on 
the CESTA grating made using a network analyzer.  
Extremely good agreement is found, both with and 
without sidewalls on the grating. 

INTRODUCTION
     In 1953 Smith and Purcell (SP) [1] sent an electron 
beam of about 300 keV energy along the surface of a 
diffraction grating, and observed visible radiation which 
satisfied the condition they proposed,  

                            
1 / cos / ,L n                    

 where  denotes the wavelength of the radiation produced 
at angle with respect to the beam, the grating period is 
L, and n, the order of diffraction, is a negative integer (for 
SP radiation). The quantity = v/c, where v denotes the 
electron’s velocity and c the speed of light. Although 
many contributions to the understanding of this radiation 
have been made over the past half-century, a renaissance
of interest followed the publication of a theory for the 
production of intrabunch coherent SP radiation by 
Andrews and Brau [2].  In this work the authors solved 
the Maxwell equations in two dimensions (2-D) (the 
grooves were assumed infinitely long with no variation of 
the fields in their direction).  They established the 
existence of an evanescent wave in the vicinity of the 
grating, and obtained the dispersion relation between 
frequency and axial wave number k as the condition 
that a determinant vanishes.  They showed that the 
intersection of the dispersion relation with the beam line,

vk , occurs at a frequency  less than the minimum 
allowed SP frequency.  The interaction between beam and 
wave leads to beam bunching at that frequency, and the 
evanescent wave will be radiated from the ends of the 
grating. If the bunching is strong enough, harmonics of 
the bunching frequency may appear in the current, and 
this could produce coherent monochromatic radiation in a 
small interval around the corresponding SP angle.  It was 
pointed out by AB that for sufficiently low beam energy, 
the intersection would occur on that part of the dispersion 
relation where the slope d /dk is negative, as in a 
Backward Wave Oscillator. The theory of Andrews and 
Brau was subsequently described in greater detail by them 
and their collaborators [3]. Support for their view was 
provided by simulations [4,5] that used the 2-D 
electromagnetic code "MAGIC" [6]. Shortly thereafter 
Kumar and Kim [7] analyzed the problem using a 
different approach, but arrived at conclusions quite 
similar to those of AB.  It is also true that the analysis of 
the evanescent wave on a lamellar grating has long been  
available in the literature, notably in the treatise of Collin 
[8]. 
    Despite  the consensus concerning the AB theory, until 
quite recently no experimental results supported their 
scenario. However, two recent experiments have reported 
evidence in its favor.  The Vanderbilt-Vermont Photonics 
collaboration [9] observed the evanescent wave, but they 
used a grating equipped with sidewalls at the groove ends, 
which is not strictly 2-D.  At CEA-CESTA a 
demonstration experiment in the microwave domain 
without sidewalls has found results which confirm the 
scenario of AB [10].  The width of  both the grating and 
the beam, w, was 10 cm. Under these conditions the main 
results of 3-D "MAGIC" simulations were similar to those 
of the 2-D simulations presented by us in Ref. 4 [11].    

     Several attempts have been made to study coherent 
Smith-Purcell in three dimensions, since all gratings have 
finite width.  Kim and Kumar [12] extended their 
previous analysis to 3-D and provided estimates for the 
beam parameters and minimum current for a set-up 
similar to the Dartmouth terahertz experiments [13].  
Dazhi Li and co-workers performed 3-D simulations 
using "MAGIC" [14,15]. They showed that one could 
expect bunching for sufficiently large currents, and that if 
sidewalls were placed at the ends of the grooves,  the start 
current would be reduced by a factor of two.  They noted 
that with sidewalls the transverse profile of the axial 
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component of the electric field has a cosine form, 
vanishing at the sidewalls, so that it couples well to a 
narrow beam in the middle of the grating.  Andrews, 
Jarvis and Brau [16] presented a 3-D dispersion relation 
for a grating with sidewalls, assuming cosine profiles in 
the grooves.  They examined in detail the dispersion 
relation for the grating used in the experiment described 
in reference 9, and showed that the predicted modes of 
operation for a beam of 30 keV were quite different 
according to whether the 2-D or their new 3-D theory 
applied.  Experiment favored the 3-D prediction. Jarvis, 
Andrews and Brau [17] have recently provided a more 
detailed description of their theory.  It differs from ours, 
in that they assume the axial magnetic field may be 
neglected, while we find a non-zero value for this field if 
the transverse wave number 0q ≠ . We recognize that 
their theory furnishes a better description than ours does 
of the results presented in reference 9. However, it doesn't 
agree with the simulations and measurements we present 
here, especially when q is large.  

   We present here our 3-D dispersion relation for a mode 
that propagates with non-vanishing wave number q in the 
direction of the grooves.  We find that the general 
solution, with an assumed ( )tqxie ω−  dependence, has zero 
electric field in the direction of the grooves, and that the 
dispersion relation is a simple generalization of the 2-D 
AB solution, in which for a given axial wave number k, 
the 3-D frequency ( )qk,D3−ω is given by  

( ) ( )( ) ( )3 2
,2 2,

D D
kk q cqωω

− −
= +                            

where ( )2 D kω −  is the 2-D AB frequency.  In reference 
12, Kim and Kumar anticipated this result, using their 
approach based on the reflection coefficient matrix for the 
grating. The case of sidewalls is then obtained by 
constraining the transverse wave number q to take on 
discrete values and adding the contribution with –q, to 
produce standing waves of the form ( )cos qx  or 

( )sin qx .  In support of this theory we show the results of 
3-D "MAGIC" simulations as well as measurements of 
the transmission coefficient of the grating used in the 
experiment described in reference 10. Extremely good 
agreement is found among theory, simulation and 
measurements carried out at loops and nodes of the 
transverse waves. 

THEORY 
The details of our theory are given elsewhere [18], so 

we present here only a brief sketch of the main results.  
The geometry of our grating is shown in Fig. 1. 

   
Figure 1: Schematic of the grating. 

 
 We assume the following form for the electric field 

( ) ( ) ( )( )ˆ, , ,x
i qx tE x t y z e eωψ −= ∇ ×

r r

            
 

where the complex function ( ),y zψ will be chosen so as 
to satisfy the source-free Maxwell equations, ω is the 
frequency and  q is the transverse wave number. The 
electric and magnetic fields may then be written as  
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where ( ),y zψ  satisfies the 2-D Helmholtz equation , 
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The function ( ),y zψ  is, to within a factor, the profile of 
Bx. Following AB, we write it as:
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where K=2π/L denotes the grating wave number.  If one 
imposes at y = 0 continuity of ψ and / yψ∂ ∂ across a 
groove and / 0yψ∂ ∂ =  atop a tooth, one obtains a 
homogeneous linear equation for the nψ ,

 ( )
0

0.mn mn n
n

R δ ψ
∞

=

− =∑
 

The dispersion relation (DR) is just the condition that the 
matrix R has  1 as an eigenvalue.   The matrix elements 
are given by 

( ) ( )*
02 tanh / / 1 ,mn n n pm pn p m

p
R H K K ALκ κ α δ

∞

=−∞

⎛ ⎞
= − +⎜ ⎟
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where the Kpn  (which depend only on k) are defined in 
AB. The key point is that mnR  depend only on k and 

2 2 2c q .  If 2-D and k satisfy the DR for q = 0, then 
2 2 2

2 D c q and k form a solution for arbitrary q. Thus 
the usual AB DR can be easily extended to any value of q.  
The profile function   depends only  on k.  If q q , 
one obtains a solution with the same frequency and , and 
one may form symmetric or anti-symmetric combinations 
that represent standing waves.   
   If the grooves are terminated with conducting sidewalls, 
Bx must vanish there, which imposes that  

2

2

3 2

2

2

3 2

1
2, 0,1, ..,

2
, 1, 2.., ,

2 1
D D

D D

c
q m f k f k

w w
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mm

 

for symmetric and  anti-symmetric modes, respectively. 
Here w denotes the grating width and we express the 
frequency  f  in Hz. We display in Fig. 2 the DRs for the 
standard 2-D theory (green), four symmetric modes 
(black) and three anti-symmetric modes (red). We have 
used the grating parameters L = 2 cm, A = H =1 cm and w 
= 10 cm. The main difference between 2-D and 3-D DRs 
is that the former acts like a low-pass filter, while the 
latter acts like a pass-band filter with multiple bands. The 
blue curves are described in the next section. 
 

 
Figure 2: Dispersion relation for grating with sidewalls. 

SIMULATIONS AND MEASUREMENTS 

   In order to support our theory, we have performed 
simulations using the 3-D version of “MAGIC”, and we 
have measured the transmission coefficient of the surface 
wave as a function of frequency with a network analyzer.    
In order to get a rough idea of the transmission properties, 
a simulated "ping" or short burst of localized 
electromagnetic field was excited in an upstream groove.  
The fields then propagated down the grating, and time 

signals of the magnetic field component xB  were 
observed in a downstream groove.  From the Fast Fourier 
Transform (FFT) of this time signal, the spectrum of 
frequencies that can propagate is obtained at once. The 
blue curves in Fig. 2 show this FFT. It is clear that the 
maxima of the pass-bands coincide with those of the DRs.  
However, a more sophisticated test can be performed by 
placing the simulated source and detector at strategic 
transverse positions, i.e., nodes and loops of the sine and 
cosine functions.  Similarly, the emitting and receiving 
antennas of the network analyzer were placed at these 
same points.  For the grating with sidewalls, a selection of 
these results is shown in Fig. 3. 

 

 
 Figure 3: Ping FFTs and S21 vs. f (GHz). 

 
The left side of Fig. 3 shows the ping FFTs, where x0 is 

the source, and xm  the detector position. The right side 
shows the measured transmission coefficient 21S .  The 
red and black squares indicate the theoretical position of 
the band-heads for anti-symmetric and symmetric modes, 
respectively. If either x0 or xm = 0, no anti-symmetric 
modes occur. For xm = 2.5 cm, the second anti-symmetric 
mode is absent, while for xm = 1.67 cm, the second 
symmetric mode is not seen.  The overall consistency 
among predictions, pings, and 21S  measurements 
supports our theory for a grating with sidewalls. 

We also simulated pings for a grating with no sidewalls, 
such as was used in ref. 10.  We found, surprisingly, that 
sharp pass-band maxima occurred at 4.74, 4.9, 5.5, 6.3 
and 7.2 GHz, while 2-D simulations indicate a maximum 
of 4.7 GHz. The second and fourth bands appeared only 
with asymmetric excitation. Empirically, these results are 
consistent with a list of discrete q values (in cm-1) of 
{0.14, 0.31, 0.58, 0.86, 1.15}. For these values, the 
transverse Bx profile has a loop near the open ends of the 
grating, in contrast to the nodes for closed ends. 
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Figure 5: Test of ( ) tan / / 4y zB t q qx E t T . 
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