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Abstract 
A set of one-dimensional equations have  been deduced 

in the time-domain for describing the free-electron laser 
radiation without using the Slowly Varying Envelope 
Approximation. They are valid for arbitrarily short 
electron bunches and for current distributions with ripples 
on the scale of the wavelength. We demonstrate that, 
under the assumption that the backward low frequency 
wave be negligible, these equations can be reduced to the 
usual  1-d equations but  with a different definition of the 
bunching term.  Few numerical examples are presented, 
showing  that for long homogeneous bunches the new set 
of equations  gives results in agreement with the usual  
FEL theory, and that short or pre-bunched electron beams  
can decrease the lethargy. 

INTRODUCTION 
  The usual equations describing the  Free-Electron Laser 
radiation process [1-3] have been deduced in the 
framework of the Slowly Varying Envelope 
Approximation (SVEA), requiring that all the 
characteristic lengths L describing the electron beam (i.e. 
the length of the beam Lb, the characteristic lengths of the 
gradients, the cooperation length Lc) are very much larger 
than the wavelength λ of the radiation. Under this 
hypothesis, the second order radiation equation can be 
simplified in a first order one, the low frequency resonant 
backward wave is disregarded, the shorter interval of 
length that can be resolved being just the wavelength λ. 
This model in its 1-d version [1],[2] and in the 3-d 
extension [3], has been at the basis of the development of 
various numerical codes [4]-[9] which have been 
extensively and successfully used in the project and in the 
interpretation of almost all FEL experiments. 
Few works [10]-[13] tried to reintroduce the backward 
wave into the model, associating to the particle equations 
not one, but a couple of independent radiation equations,  
written for two wave packets centered respectively on two 
different single resonances correlated only by the 
electrons. In this way, a further characteristic length, the 
wavelength of the second FEL resonance λlow,  is 
introduced, and the set of equations holds under the 
further assumption L>>λlow. This system of equations do 
not answer to the expectations for a tool suitable for 
studying short or pre-bunched beams, because, even if it 
is true that the usual application of the SVEA necessarily 
excludes all backward waves, the radiation field is 
supposed to be the superposition of two wave packets 
both structured with slowly varying amplitudes. The same 

method has been applied for the insight of the radiation 
harmonic, where, however, if the SVEA is valid for the 
fundamental, than it surely holds also for all the 
harmonics. 
Superradiance and coherent spontaneous emission 
produced in short bunches have been the object of the 
studies of Refs [14]-[15]. In the first paper, an approach 
in the frequency-domain is developed, while a time-
domain model is presented in the second one.  In both 
approaches, the radiation is assumed to have a broad 
bandwidth around the high frequency resonance, but the 
contribution of other parts of the spectrum is neglected, 
together with the second derivatives in the radiation 
equation. 
In this paper, we derive a set of 1-d FEL equations from 
the Maxwell-Lorentz system, without using the SVEA, 
valid therefore for arbitrarily short electron bunches and 
for current longitudinal distributions with ripples on the 
scale of the wavelength. No hypotheses on the spectrum 
are assumed and, therefore, all the spectrum is globally 
taken into account.  Furthermore we develop a code 
which solves these equations. We demonstrate that, under 
the assumption that the backward low frequency wave is 
negligible, these equations can be reduced to the usual 
SVEA-like 1-d equations but  with a different definition 
of the bunching term, retrieving a model very similar to 
that of Ref. [15].  Few numerical examples are presented, 
showing  that for long homogeneous bunches the new set 
of equations  gives results in agreement with the usual  
FEL theory, and that short or pre-bunched electron beams  
can decrease the lethargy. 

THE MODEL EQUATION 
The From the Maxwell-Lorentz  system,  the following 

set of one-dimensional equations can be deduced, 
describing  the dynamics of a beam of Np electrons in an 
helical undulator and the consequent FEL radiation: 
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In (1) zj is the longitudinal coordinate, Pj(t) = 
βj||(t)γj(t)/γ0 is the normalized momentum,  
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and  γj  the Lorentz factor of the  j-th electron. γ0 is the 
average value of γj(t=0) and ns is the superficial electron 
density. Furthermore, the undulator vector potential is 
described by the expression:  
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with aw0 the wiggler parameter, kw the wiggler wave 
number, and 2/)i(ˆ yx eee += . 
The radiation potential vector is represented by: 

  ( )3.ccˆ)t,z(A)t,z( += eA                                      
Both A and Aw have been written in  the Coulomb gauge 
and normalized with respect to mc2/e. 
Only few standard hypotheses have been done: in 
particular, we have supposed that expression (2) is valid 
everywhere, not only on the z-axis, we have disregarded 
space charge, we have assumed that the transverse 
components of the generalized momenta vanish, and that 
the radiation potential |A(z,t)| is smaller than aw0 during 
all the radiation process. 
Then we simply write the radiation as the sum of two 
terms:  

 
   A(z,t) = Ap(z,t)+Ar(z,t)                        (4) 
 

The set of equations  
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is completely equivalent to the last of equations (1) if 
Q(z,t) is solution of the equation : 
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From the definition of S, and solving (6) with the 
condition limz→-∞Q(z,t) = 0 for each t ≥ 0, one obtains: 
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where the last sum is performed over all the electrons of 
the beam behind the point z. 
Our equations are therefore : 
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The emitted power P for unit of surface S can be written 
as:                                             
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The relation between these no SVEA equation and the 
usual SVEA ones can be made by introducing the 
hypothesis that 
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with k = kwβ0/(1-β0) and β0 ≈ (1-(1+aw0

2)/γ0
2)1/2 and by 

obtaining the following equation:  
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Where θj(t) = (k+kW)zj(t)-ckt   are the phase angles of the 
electrons in the ponderomotive wave. 
With an average operation < > on the wavelength λ and 
with the cancellation of all second derivatives, which 
have been supposed smaller than the other terms due to 
the required slowly variation of the amplitude M(z,t), the 
usual SVEA model equation is retrieved: 
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Here the right hand side term b(z,t) is the usual bunching 
factor defined in the framework of the SVEA and, 
accordingly, the sum is extended over all the electrons 
inside an interval   z-Lm/2 < zs(t) < z+Lm/2, with the 
average length Lm>λ. 

NUMERICAL RESULTS 
Equations (8)-(11) have been integrated numerically 
starting from noise and the results compared with those 
obtained by using the SVEA model described by equation 
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(15). Typical results are presented in Fig. 1 and in Fig. 2 . 
Common values of the parameters are: Ne=2.108 (Ne total 
number of electrons), γ0=100, aw0 = 1.47 , λw = 2.8 cm, 
rb=50 μm (rb is the beam radius).. With these numbers, the 
resonant wavelength is λ = 4.42 μm. The case presented 
in  Fig 1 describes the physics of a long bunch with 
Lb=800 μm (I=12 A), while the second one in Fig. 2, 
which can be classified as a situation representative of 
short bunches, has Lb=20 μm (I=480 A). In both Figures, 
red curves give the average power vs z/Lg , solutions of 
the equations (8)-(12), while the blue curves are the usual 
SVEA results, obtained by integrating equation (15)-(17). 

For long bunches, the growth of the power and the 
saturation values shown by the two curves in Fig. 1 are 
very similar with discrepancies within few percents due to 
the different numerical schemes, while for shorter 
bunches, the details of the growth are also qualitatively 
different and the saturation power is larger in the non 
SVEA case by roughly  a  factor between 2 and 3. 
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Figure 1: Average power <P> vs z/Lg in the case SVEA 
(solution of equation 15) and NOSVEA (solution of       
equations (8)-(11)) for Lb=800 μm. 

 
 

Another different particular is that the lethargy presented 
by the  radiation emitted short bunches in the treatment 
without the SVEA is shorter, and the radiation present a 
very early growth characterized by oscillations whose 
spatial periodicity is the wiggler wavelength. 
This large amount of spontaneous emission shown by 
short beams with large gradients was first observed in 
Refs  [16] and studied in detail in [14] and [15].  
We have already shown that from the general equations 
(8)-(11) it is possible to deduce the SVEA equation (15), 
by admitting that the average value <M(z,t)> of the 
function M(z,t), defined in (13) be a slowly varying 
function both in space and time. These conditions are 
sufficient, but not necessary for reducing (8) in (15). 
In fact, starting again by (8) in the form: 
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Figure 2: Average power <P> vs z/Lg in the case SVEA                
(solution of equation 15) and NOSVEA (solution of 
equations (8)-(11)) for Lb=20 μm. 
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and  introducing a new quantity : 
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which is valid in the only limit that the length Lm used in 
the process of average be sufficiently small to permit to 
indentify the average value <Np(z,t)>  with the punctual 
value Np(z,t). By comparing (18) and (8), we conclude 
that Np(z,t) and the slowly varying envelope M(z,t) satisfy 
similar equations with the only difference of the 
dimension of the length of average, which, usually, when 
the equation is used in the SVEA limit, is indeed the 
wavelength, but, in general, can be reduced according to 
the dimension of the shorter characteristic length in the 
problem. 
Furthermore, since the quantities Np(z,t) and M(z,t) 
appear in the particle equation in the same way, then they 
can be considered indeed equal if they satisfy the same 
initial conditions.  
This last circumstance is satisfied in all cases when the 
regressive term Nr(z,t) can be considered negligible and 

when: 1
2
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k
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 In Fig 3 and 4 we present the solution of equation (18) 
for various values of the average length Lm for the same 
parameters of Fig 1 and 2 respectively. 
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Figure 3: Average power vs z/Lg in the same cases of Fig. 
1 and (a) solution of  equation (18) with Lm=0.25 λ, and 
(b) Lm=0.75 λ. 
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Figure 4: Average power vs z/Lg in the same cases  of 
Fig. 2 and (a) solution of equation (18)  with Lm=0.5 λ,            
and (b) Lm=0.1 λ. 
 
The numerical evidencies show that the code based on 
equation (20) gives results that, in the case of short 
bunches, are more and more similar to the no SVEA 
results as the average length Lm is decreased (see Fig. 3, 
where curve (a) is made with Lm=0.25 λ, and (b) with 
Lm=0.75 λ). In the case of long bunches, all the cases 
(SVEA, no SVEA, and different average lengths Lm, i.e., 
(a) made with Lm=0.5 λ, and (b) with Lm=0.1 λ) give very 
similar results. In cases where the backward waves are 
not important and after a careful weight of the dimensions 
involved, the code based on equations (18)-(20), can be 
substituted to that based on (8)-(12), with saving of 
computer time. 
 
 
 
 

CONCLUSIONS 
We have written a set of equations valid outside the 
SVEA limits, which can be used to investigate the FEL 
radiation when the electron bunch is short or presents 
density gradients on the wavelength scale. 
We have developed a numerical code for integrating these 
equations and the results have been compared with those 
of the usual SVEA approach. 
We have confirmated that short bunches present a strong 
initial spontanous emission, shorter lethargy and larger 
saturation values. 
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