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Abstract

We study both analytically and numerically the effects
of a laser pulse on the longitudinal phase space of an elec-
tron beam in the stage of extraction from the cathode. We
show how the interaction can produce modulations in the
longitudinal momentum distribution.

INTRODUCTION

The interaction between a laser and an electron beam
can give rise to a number of phenomena, the most impor-
tant among them are the Thomson scattering and the rel-
ativistic ponderomotive scattering. In a number of labo-
ratories it was observed recently that the transverse distri-
bution of optical transition radiation (OTR) emission from
accelerated electron beams deviates substantially from the
expected beam current distribution [1, 2, 3]. This effect
of coherent OTR is related to the process of longitudinal
microbunching [4, 5, 6]. Now there is an understanding
that these observations are evidence of a longitudinal col-
lective interaction process [2]. A possible explanation of
such process was proposed in [7] as a collective Coulomb
interaction that stabilizes and improves already existing mi-
crobunching. A source of the initial density modulation
could possibly be a laser field [8] and some experiments
are foreseen to check this proposal [9].

In this paper we want to analyze the possibility of mi-
crobunching an electron beam by means of the interaction
with a Ti::Sa laser during the extraction from the photo-
cathode.

MODEL EQUATIONS

In our set up, the laser propagates along the z axis, the
electric field being polarized along the x axis, so that it lays
in the incidence plane:

E = exE0I(ϕ) sinϕ

B = ey
E0

c
I(ϕ) sinϕ

with ϕ = ωt − kz, I(ϕ) represents the modulation of the
laser field longitudinal profile and E0 is the peak laser field.
Here the laser electric field has been supposed transversally
uniform and the laser z axis forms an incidence angle θ
with the electrons axis zel. The electrons are supposed to
be at xel = yel = zel = 0 at t = t0, being t0 the electron
extraction time, with an arbitrary initial momentum.
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The momentum equations in this configuration turn out
to be:

dpx
dt

= −eE0I(ϕ)(1− βz) sinϕ (1a)

dpz
dt

= −eE0I(ϕ)βx sinϕ (1b)

dpy
dt

= 0 (1c)

leading to
py(t) = py,0. (2)

Furthermore, taking advantages from the equation for γ,
one can write another constant of motion:

pz(t)− γ(t) = pz,0 − γ0, (3)

where γ0 is the initial Lorentz factor. From (1) we get:

dϕ

dt
= ω(1− βz) = ω

(
1− pz

γ

)

= ω
γ0 − pz,0

γ0 − pz,0 + pz
= ω

γ0 − pz,0
γ

. (4)

Moreover, from the definition of the Lorentz factor, we ob-
tain a relation between pz and px:

pz =
m2

0c
2 + p2y,0 − (m0γ0c− pz,0)

2

2(m0c− pz,0)
+

p2x
2(m0c− pz,0)

(5)
that, inserted in (4), leads to:

(ϕ− ϕe
0)

[
(m0γ0c− pz,0)

2 +m2
0c

2 + p2y,0
]

+

∫ ϕ

ϕe
0

p2x(s) ds = 2ω(m0γ0c− pz,0)
2(t− t0), (6)

where t0 is the electron injection time and ϕe
0 the laser

phase experienced by the electron at injection.
From the above equations it is possible to deduce:

x(t)− x0 =
1

k(m0γ0c− pz,0)

∫ ϕ

ϕe
0

px(s) ds (7a)

z(t) =
1

2km2
0c

2

∫ ϕ

ϕe
0

p2x(s) ds. (7b)

To close the problem, it is, therefore, necessary to integrate
first the equation for px:

px(t)− px,0 = − e

ω

∫ ϕ

ϕe
0

E0I(s) sin s ds (8)

and, then, the integrals involving pz .
The integral (8) can be performed for few types of laser

longitudinal modulation, as, for instance, a flat top of finite
duration, a Gaussian and a quadratic cosine modulation.

MOMENTUM MODULATIONS PRODUCED BY LASER-BEAM
INTERACTION AT A PHOTOCATHODE
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REALISTIC LASER PROFILE

We will now solve the equations of motion for the elec-
tron bunch when the laser profile is described by the enve-
lope function:

I(ϕ)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin2
(

π
2kLr

ϕ
)

0 ≤ ϕ ≤ kLr,

1 kLr < ϕ ≤ k(Lr + Lc),

sin2
(

π
2kLr

ϕ− πLr

2Lc

)
k(Lr + Lc) < ϕ ≤ kLtot,

0 otherwise,
(9)

where k is the laser wave vector, Lr and Lc are, respec-
tively, the lengths of the rising and of the constant portion
of the laser and Ltot = 2Lr + Lc is the total laser pulse
length; notice that the rising and falling times are assumed
to be equal. We also suppose that p0 = 0, i.e. the beam is
cold. In order to simplify calculations, from now on we will
assume that any length scale of the laser contains an exact
number of laser wavelengths; we will show afterward that
this choice does not affect significantly the overall results.

From eq. (8) and (5), the momentum components due to
the effect of the laser can then be written as

px(t0)

mc
=

a

2
H(t0)

pz(t0)

mc
=

a2

8
H2(t0) (10)

where a = eE0

m0c ω
. Setting λr = Lr/λ, λc = Lc/λ,

λtot = Ltot/λ and λr, λc, λtot ∈ I
+ and, making the real-

istic assumption that λr � 1 (whereas λc can also be zero),
H(t0) takes the simple form:

H(t0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 cosωt0 sin
2
(

ωt0
4λr

)
ωt0 ∈ D1

2 cosωt0 ωt0 ∈ D2

−2 cosωt0 sin
2
(

πλc

2λr
− ωt0

4λr

)
ωt0 ∈ D3

0 otherwise

,

(11)
where D1 = [0, 2πλr], D2 = (2πλr, 2π(λr + λc)] and
D3 = (2π(λr + λc), 2πλtot]. Since the laser usually im-
pinges on the cathode with a finite angle θ, we need to
project the momentum into the zel direction of the elec-
trons, obtaining:

pzel(t0) = − cos θ pz(t0)− sin θ px(t0). (12)

Notice that the effect of the laser in the x direction is pro-
portional to a cosωt0 while in the z direction it is propor-
tional to a2 cos2 ωt0; if we have a setup such that a sin θ �
a2 cos θ, we can expect a mixing of the longitudinal and
transverse contributions, as is shown in FIG. 1.

The amount of displacement from the initial position due
to pzel(t0), on the typical time scales of photocathode laser
duration, is very small, provided we assume realistic values
for the parameters a � 1 and E0 ≤ Eacc, where Eacc is the
accelerating electric field. For this reason, we can consider
pzel(t0) as an initial condition on the electrons momentum,
setting p

(0)
zel ≡ pzel(t0).

Whatever the laser profile, its effects on the electrons can
be summarized as follows. The E × B term and the lon-
gitudinal gradient of the laser induce a momentum along
the k direction which is constant on all the bunch; due to
the assumptions made on a and E0, its component along
zel is readily canceled by Eacc while the transverse compo-
nent is likely compensated by the transport line. Most im-
portantly, a modulation on the electron momentum is pro-
duced, which depends on the injection time t0 and survives
the subsequent acceleration.

Finally, let us comment on the assumption of cold beam:
as shown before, the modulation in longitudinal momen-
tum scales as a second degree polynomial of a. For a value
of a ≈ 10−2 and θ a few degrees, the modulations show an
amplitude of a few hundreds eV/c while the typical ther-
mal momenta of electrons are of the order of few eV/c: this
means the thermal momenta can at most “blur” the induced
modulations.

LONGITUDINAL MOMENTUM
DISTRIBUTION

It is possible to use the results of the preceding section
to calculate the electrons dynamic under the effect of an
accelerating field and find out how the beam gets bunched
in space by the effect of the laser. However, we prefer to
focus on longitudinal momentum since its distribution does
not change with acceleration and drifts. Moreover, accel-
eration can add to the moments depicted in FIG. 1 a linear
function (as long as the laser pulse is short) which could
be removed, at least in principle. FIG. 1 shows the mo-
mentum modulation and its distribution due to the action
of a laser with an incidence angle of 3◦ and a longitudinal
profile as in eq. (9). There appear a few main peaks and a
number of secondary peaks. Upon inspection, it becomes
clear that the electrons are modulated following the classi-
cal harmonic oscillator distribution for each laser period:

P (p) =
1

πpn

√
1− p2

p2
n

(13)

where pn is the maximum extent of the oscillation. pn is
usually a slowly varying function of time (i.e. p′n(ϕ) ∝
I ′(ϕ) � ω). Due to this variation, the total distribution
results in a sum of distributions like (13) with pn varying
accordingly to I(ϕ):

P(p)=

N−1∑
n=0

Θ
[
E0I

(
πn
N

)− p
]
Θ
[
E0I

(
π(2n+1)

2N

)
+ p

]

πN

√(
E0I

(
πn
N

)− p
)(

E0I
(

π(2n+1)
2N

)
+ p

) ,

(14)
where N is the number of laser periods contained in I and
Θ(x) is the Heaviside theta function.

The presence of the secondary peaks does not allow
to give the momentum distribution a manageable expres-
sion. Moreover, since they represent each laser oscillation
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Figure 1: A plot of the initial longitudinal momentum modulation as a function of the extraction time t0 (left) and the
corresponding longitudinal momentum distribution (right). Green arrows show the correspondence between the main
peaks and the stationary points of I(ϕ), while the magenta line shows the presence of a minor peak due to a single laser
oscillation (i.e. E′(ϕ) = 0). The relevant parameters are: a = 0.1, ω = 0.75π × 1015Hz, Lr = 20λ, Lc = 40λ,
θ = π/60 = 3◦.

when I ′(ϕ) 
= 0, their position is linked to the laser ini-
tial phase and their number to the exact number of the os-
cillations. Therefore, we would like to average out their
presence, contenting ourselves to describe the baseline on
which they stand. This task is easily accomplished in the
limits I ′(ϕ) � ω and λr � 1 since we can replace the
summation in (14) with an integration. If I has the form
(9), it is then possible to describe the averaged distribution
P̄ of p(0)zel , taking particular care in identifying which are
the dominant frequencies in (12) and whether they signif-
icantly mix or not due to the different weights. The result
is quite cumbersome and will not be reported here in de-
tails. A comparison of a numerical sampling of eq. (12)

Figure 2: A confrontation of P̄ (blue) and a stochastic sam-
pling of the longitudinal momentum function (12) (red).
The parameters are the same as in FIG. 1 except for Lc

which is 200λ.

with the averaged distribution P̄ is shown in FIG. 2; notice
the presence of the secondary peaks around the main ones
in the numerical sampling. Notice also that the distribution
is formally divergent at the peaks: this implies that the ef-
fective height of each peak depends on the sampling of the
function (12) and is not a significant quantity.

The real distribution can be well approximated by the
expression:

P̄ (p) ≈ Q1√
h3 − p

√
h1 + p

Θ [h3 − p] Θ [h1 + p]

+
Q2√

h3 − p
√
h2 + p

Θ [h3 − p] Θ [h2 + p] (15)

+
Q3√|p|Θ [h3 − p] Θ [h1 + p] ,

where hi are the positions of the main peaks, as shown in
FIG. 2, and Qi the relative weights due to the different
charge content. The values of all such parameters can be
argued from the full form of P̄ .

As a final consideration, we would like to stress that the
laser frequency only contributes through the definition of
a. The meaning of such dependence is that the laser fre-
quency only measures the frequency with which the elec-
trons “sample” the envelope; as long as I varies on scales
much longer than λ, and the longitudinal electron density is
high enough, the main features of the momentum distribu-
tions are not affected by ω. Moreover, if a particle is accel-
erated by an RF cavity or a DC gun, it experiences a higher
laser frequency due to the Doppler effect; anyway, as long
as its rigidity can be considered constant, the momentum
distribution is unaffected by the acceleration. Finally, let
us comment on the assumption on the initial transverse po-
sitions of the electrons, i.e. xel = yel = 0: if an elec-
tron starts with a displacement from this position, it will
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only experience a different initial laser phase (and, even-
tually, a different field strength if a transverse laser profile
is added); this will affect the momentum distribution only
quantitatively, not qualitatively.

NUMERICAL SIMULATIONS

In order to test the analytical model and the assumptions
made, we run some numerical simulations using a modi-
fied version of the code RETAR [10] in which a realistic
laser transverse profile with bending wavefronts [11] has
been added; the longitudinal shape is Gaussian. The elec-

Figure 3: Longitudinal phase space of the electron bunch
after the interaction with a Gaussian laser pulse and the
acceleration in a DC gun. The relevant parameters are θ =
82◦ and a = 2× 10−3.

tron bunch has a diameter of 100 μm and the initial parti-
cle density is uniform both longitudinally and transversally.
The initial energy spread is set to 3 eV/c and the emittance
is 1 μm. The interaction with the laser takes place while
the bunch is accelerated in a uniform electric field. Since
we needed a high number of particles, the electron bunch
length is smaller than the laser duration: therefore, no neat
peaks are expected, since there are not domains in which
I ′(ϕ) is zero. Only an enhancement of particles density on
the edges of the Gaussian profile is foreseen.

In FIG. 3 a longitudinal phase space of the electrons is
shown; there appears the expected density increase. The
momentum density profile, for three different values of the
angle θ, is shown in FIG. 4. As can be seen, the presence
of the initial energy spread, emittance and the acceleration
do not interfere significantly with the expected momentum
distribution which depends mainly on the laser parameter
a and the geometry of the interaction.

CONCLUSIONS

We studied the effect of a laser pulse on the electrons ex-
tracted from a photocathode both theoretically and numeri-
cally, showing that the laser fields can induce a modulation

Figure 4: Longitudinal momentum density for three dif-
ferent angles of incidence. The laser parameter is a =
2× 10−3

on the electrons longitudinal momentum due to the longitu-
dinal laser profile itself. Such modulations are likely to sur-
vive the bunch acceleration in a linac and could possibly be
converted in density modulations if the bunch goes through
dispersive sections such as bending magnets or doglegs.
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