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Abstract

Using a time-dependent approach the analysis and opti-
mization of a planar FEL-amplifier with an axial magnetic
field and an irregular waveguide is performed. By applying
methods of nonlinear dynamics three-dimensional equa-
tions of motion and the excitation equation are partly in-
tegrated in an analytical way. As a result, a self-consistent
reduced model of the FEL is built in special phase space.
The reduced model is the generalization of the Colson-
Bonifacio model and takes into account the intricate dy-
namics of electrons in the pump magnetic field and the in-
tramode scattering in the irregular waveguide. The reduced
model and concepts of evolutionary computation are used
to find optimal waveguide profiles. The numerical simula-
tion of the original non-simplified model is performed to
check the effectiveness of found optimal profiles. The FEL
parameters are chosen to be close to the parameters of the
experiment (S. Cheng et al. IEEE Trans. Plasma Sci. 1996,
vol. 24, p. 750), in which a sheet electron beam with the
moderate thickness interacts with the TE01 mode of a rect-
angular waveguide. The results strongly indicate that one
can improve the efficiency by a factor of five or six if the
FEL operates in the magnetoresonance regime and if the
irregular waveguide with the optimized profile is used.

INTRODUCTION

The recent progress in the theory and experiment of free-
electron lasers (FELs) and gyrotrons [1, 2] with Bragg cav-
ities is strongly indicative that the application of novel elec-
trodynamical structures provides the opportunity to realize
unique properties of FELs to a large measure. For example,
Bragg cavities, which are periodic arrays of varying dielec-
tric or metallic structures, stimulate interest in traditional
microwave applications because they can be built oversized
(quasioptical) and, therefore, employed at higher frequen-
cies and higher power. At the same time the investigation
of traveling wave tubes (TWT) [3] shows that the TWT ef-
ficiency based on a regular (along the interaction region)
electrodynamical structure is far from its possible maximal
value. In fact, the difference between the cold phase ve-
locity and the average velocity of the beam is the control
parameter of the beam-wave interaction. By changing this
parameter along the interaction region one can control the
beam bunching and the energy transfer between bunches
and microwaves. The local variation of the cold phase ve-
locity along the region depends on the local variation in the
waveguide profile. Then, in an effort to control the beam-
wave interaction and improve the efficiency one should use
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irregular electrodynamic structures. Specifically, the com-
bination of Bragg reflectors [4] and the section of an ir-
regular waveguide seems to be a promising electrodynamic
structure for a high-efficiency powerful FEL. The analy-
sis of a planar FEL-amplifier with an axial magnetic field
and an irregular waveguide is the topic of the present pa-
per. This FEL configuration attracts out interest because
it is well known that through the use of the axial magnetic
field one can substantially improve the efficiency, as the cy-
clotron frequency tends to the undulator frequency [5, 6].

THE MODEL

Let a sheet relativistic electron beam be injected into
an irregular waveguide located in the external pump mag-
netic field that consists of the magnetic field of a linearly
polarized (planar) undulator and a uniform axial magnetic
field (see Fig. 1). The pump magnetic field is given by the
vector-potential:

Ap
x(�r) = (Bu/ku) cosh(kuy) cos(kuz) + B‖y. (1)

Here B‖ is the uniform axial guide field, Bu is the mag-
nitude of the planar undulator field, ku = 2π/λu and λu

are the wave number and the period of the undulator, re-
spectively. In numerical simulations we model the injec-
tion of the electron beam into the interaction region by
allowing the undulator amplitude to increase adiabatically
from zero to a constant level over Nu undulator periods [7].
The unmodulated electron beam enters the interaction re-
gion, z ∈ [0, L], with average longitudinal velocity V‖.
The irregular waveguide boundaries are set by expressions:
x = ±a/2 and y = ±w(z)/2 (a � w), where w(z)
describes the varying distance between two wide walls of
the waveguide, and w ′(0) = w′(L) = 0. Let the FEL-
amplifier be seeded by the TE01 mode, which is resonant
(synchronous) with the electron beam, the mode frequency

Figure 1: Sketch of the FEL in the x = 0 cross section.
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and the amplitude at the input into the interaction region
(z = 0) equaling ω and V0, respectively. We consider that
the interaction region is ideally matched to the regular out-
put waveguide at the section z = L.

We will ignore scattering of the seed TE01 mode to
higher modes and as well as the mode generation by the
electron beam; then the evolution of the signal TE01 mode
is governed by the x-component of vector-potential A s

x:

As
x(�r, t) = Re
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Here V (z, t) is the slow-in-time amplitude satisfying the
equation
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is the wave number squared, vgr(z, ω) = (dkz/dω)−1 is
the group velocity, c is the speed of light and S = a × b.
The boundary conditions read
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The microscopic current density is given by the follow-
ing sum over electron trajectories, [7]:

�j(�r, t) =
I0

Sb

Xb/2∫

−Xb/2

dx0

Yb/2∫

−Yb/2

dy0

t∫

t−L/V‖

dte
�p(z; �r ⊥0, te)
pz(z; �r ⊥0, te)

×

δ[�r⊥ − �r⊥(z; �r ⊥0, te)]δ[t − t(z; �r ⊥0, te)], (5)

where I0 is the beam current at the input into the inter-
action region; Sb = XbYb is the cross sectional area of
the beam; �p(z;�r⊥0, te) and �r⊥(z;�r⊥0, te) are the mechani-
cal momentum and the transverse coordinate, respectively;
t(z;�r⊥0, te) is the arrival time of an electron at the posi-
tion z; te and �r⊥0 = �r⊥0(x0, y0) are the entrance time and
the transverse coordinates, which the electron has at the
input of the interaction region. The sheet electron beam
is lying from x0 = −Xb/2 to x0 = Xb/2 and from
y0 = −Yb/2 to y0 = Yb/2 in the x and y directions, re-
spectively. Since the relativistic beam-wave interaction is
being studied, the nonradiated fields (space-charge fields)
are supposed to be negligible. The relativistic effects result

in that force fm caused by the nonradiated magnetic field
partially suppresses the defocusing action of the transversal
part of force f

(pot)
e caused by the potential part of the non-

radiated electric field, the axial component of f
(pot)
e being

partially compensated by force f
(rot)
e caused by the rota-

tional part of the nonradiated electric field (see [8] for de-
tails).

The motion of a typical electron within the electron
beam can be described by the relativistic Hamiltonian

H =
√

m2
ec

4 +
(
c �P − e �Ap − e �As

)2 = meγc2. (6)

Here e and me are the electron charge and rest mass, re-
spectively; the canonical momentum �P is related to the
mechanical momentum �p by �P = �p + (e/c)( �Ap + �As).
The initial conditions for the mechanical momentum and
coordinates read:

px|t=te = py|t=te = 0, pz|t=te = EV‖/c2,

x|t=te = x0, y|t=te = y0, z|t=te = 0,
(7)

where E is the initial energy of the electron entering the
interaction region at the time te. The excitation equation
(3) along with the expression for the current density (5) and
the equations of motion generated by the Hamiltonian (6)
describe the electron-wave interaction in the studied FEL
in a self-consistent way.

CONTROL OF THE BEAM-WAVE
INTERACTION

In order to find the parameters and the waveguide pro-
file that provide the maximal efficiency one has to apply
an optimization technique. However, the direct numerical
optimization based on the non-averaged FEL model fails
to work because a vast amount of computational resources
is required. Typically, about several thousand equations of
motions and the partial differential equation for the wave
amplitude have to be simulated. In this paper I propose
another approach to the problem. The investigation is di-
vided into several stages: initially equations of motion and
the excitation equation are partly integrated in an analyt-
ical way using methods of nonlinear dynamics. As a re-
sult, the universal reduced FEL model is derived in special
phase space. Then with this model and some principles
of evolutionary computations (genetic algorithms) the nu-
merical optimization of the waveguide profile is performed.
Finally, the simulation of the non-simplified original model
using the found optimal waveguide profiles is carried out.
So, one can come closer to understanding of what increase
in the efficiency can be achieved in practise. For lack of the
paper space let us go straight to the numerical results of the
optimization for a practical example (for details see [9]).

The FEL parameters are chosen to be close to the pa-
rameters of the experiment [10]: 450-kV beam voltage,
|I0| = 16-A beam current, 1.0 mm× 2.0 cm sheet beam in-
teracts with the TE01 mode (the field varying along the nar-
row wall) of the 4.5 mm × 6.0 cm rectangular waveguide.
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Figure 2: The FEL efficiency and waveguide width vs. the interaction length. The results of the non-simplified model
simulation are demonstrated.

The undulator magnitude increases adiabatically within six
periods and the undulator is characterized by Bu = 3.5 kG
and λu = 1.0 cm in the regular region. A 1.5-kW input sig-
nal with the 4.2 mm wavelength is injected. In our simula-
tion we assume that there is the axial magnetic field 20 kG
as well. The wavelength is slightly different from that in
the experiment because of the different average axial veloc-
ity. The results of our simulation code were verified against
of those of the paper [10] and an excellent agreement was
found. Indeed, according to the experiment [10], the non-
optimized FEL without the axial magnetic field approaches
saturation at a wiggler length of 71 cm with a gain of 24 dB
at a 1 kW input power, whereas, according to our simula-
tions (see also Fig. 2A), the FEL approaches saturation at a
length of 74 cm with a gain of 25 dB.

From Fig. 2A we see that using the magnetoresonance
effect we can significantly enhance the efficiency. It was
4% efficiency without the axial field in the experiment and
it is 12% efficiency with the axial magnetic field. How-
ever, there is a weak interaction between the external beam
layers and the microwave because different layers of the
electron beam have different ‘transverse’ detuning with the
wave due to the transverse inhomogeneity of the pump
magnetic field. Geometric positions of different beam lay-
ers at the beginning of the interaction region are shown in-
side the dotted ellipse. The black curve is for the central
layer. Other layers are displaced with respect to the sym-
metry plane y = 0.

In Fig. 2B the results for the optimized FEL with the
axial field are presented. The maximal relative deviation
of the waveguide width is 8% and the maximal and mini-

mal widths are around 4.9 mm and 4.4 mm, respectively.
The dimensionless slope of the taper εw = k−1

u ∂z ln w ≈
0.0002 is much smaller than the normalized growth rate
of the wave Imδkz/ku ≈ 0.0029. Therefore, our model,
based on the approximation in which mode-mode coupling
terms are neglected in the large signal equations, seems to
be reasonable. Using the waveguide with the optimized
profile one can double the efficiency so that the final effi-
ciency is around 22%. We also see that the external layers
interact with the wave much more effectively in the opti-
mized FEL. So, by changing the waveguide profile we reg-
ulate the phase shift between a ponderomotive current and a
ponderomotive wave thus controlling the beam-wave inter-
action and increasing the FEL efficiency. It is checked that
the proposed FEL-amplifier reaches steady-state regime
and it takes around 200 ns.

It should be mentioned that the applied axial magnetic
field �B‖ not only allows one to increase the FEL efficiency
substantially, but also causes a beam divergence due to the
electron drift �B‖ × ∇ �Bu ( �Bu is the undulator field) in the
x-direction. However, ponderomotive potential W is in-
dependent of x-coordinates of electrons because the mi-
crowave and pump magnetic field are homogeneous in the
x-direction. As a result, the beam-wave interaction is not
drift-dependent unless electrons fall down on the waveg-
uide walls. It is checked that electrons do no touch the
walls in the situations of interest (see Fig. 3). Since the
drift velocity depends on y0 as sinh[kuy0] the central layer
y0 = 0 does not undergo the drift effect, whereas the beam
layers displaced with respect to the symmetry plane y = 0
drift toward walls with different velocities.
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several electrons’ trajectories

for layers y0=0.05 cm and y0=-0.05 cm
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Figure 3: Some electrons’ trajectories in the x-z and y-z
planes are shown.

Depending on specific parameters, a number of parasitic
modes, including a mixture of the TE21 and TM21 modes,
may be excited by the beam. However, for the given above
FEL configuration parasitic modes affect weakly interac-
tion of the beam with the dominant TE01 mode due to sev-
eral reasons. Coupling between the wave and the beam
strongly depends on the electric field distribution in the
transverse plane and the beam location. From Fig. 4 we see
that the beam position coincides with the field maximum
for the TE01 mode and the field distribution is homoge-
neous in the x-direction, therefore the beam-wave coupling
is high. But the contributions of different parts of the beam
annihilate each other for TE11 and TM11 because the elec-
tric field Ex (Ey) has different signs for x > 0 (y > 0) and
x < 0 (y < 0). As for the TE21 and TM21 modes, these
modes are quite effectively matched to the beam via Ex,
but their resonant frequency is 68.5 GHz whereas the FEL
is seed at the frequency 71.4 GHz and the bunching occurs
at a higher frequency than it is necessary for the excitation
of TE21 and TM21 modes. In the experiment [11] the out-
put power from the tapered wiggler was nearly all (∼90%)
in the fundamental mode whereas the resonant frequencies
for the TE01 and TE21 modes were 34.6 and 32.5 GHz,
respectively. Moreover, it was not reported about the par-

Figure 4: The field distributions of TE01, TE11, TE11

modes and the beam initial position are demonstrated.

asitic modes excitation in experiment [10]. Besides, the
beam drift leads to suppression of the TE21-TM21 modes
excitation because, as we see from Fig. 3 and Fig. 4, at
the end of the interaction region the phase shift between
the external beam layers y0 = ±0.05 mm and the central
layer y0 = 0 is around π. Therefore, the contribution of
the different layers is partly annihilated and we may ignore
parasitic modes.

CONCLUSION

The operation of the planar FEL-amplifier with the axial
magnetic field and the irregular waveguide is studied in a
self-consistent way. It is shown that one can increase the
efficiency by a factor of five or six if the FEL operates in the
magnetoresonance regime and if the irregular waveguide
with the optimized profile is used
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