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Abstract

Power and growth rate for free-electron laser amplifier
with realizable helical wiggler and ion-channel guiding
are calculated using a three-dimensional simulation with a
steady-state amplifier model. The final form of dynamical
field equations is obtained by substitution of the vector
potential at Maxwell’s equations. The electron orbit
equations are derived by Lorentz force equation. The
coupled nonlinear electron orbit equations and field
equations have been solved numerically and finally, graph
of power and growth rate are shown for TE;; mode

INTRODUCTION

Many studies on the free electron laser, in the long
wavelength regime, have used axial static magnetic field
to enhance the gain. Also, for low-energy and high
current electron beam, axial magnetic field or ion channel
guiding is used to focus the beam against the self-field. In
ion-channel guiding, by passing the relativistic electron
beam through the ionized plasma, the plasma electrons
will be repelled by ions and the ion will remain
stationary; this ion core will direct the beam. This
technique was first proposed by Takayama and Hiramatsu
[1] for use in free electron laser and was tested first by
Ozaky et al [2], and was evaluated by the numerical
simulation [3,4]. Theoretical studies for ion-channel
guiding and helical wiggler under appropriate conditions
have shown to produce significant power. Steady-state
trajectories of electron for helical wiggler and ion-channel
guiding have been studied in one and three dimensions [5-
9]. In linear and nonlinear theory, many studies have been
done on free electron laser with helical wiggler and ion-
channel [10-12]. In nonlinear theory, free electron laser
with helical wiggler and axial magnetic field has been
studied by Ferund et al [13] but at the presence of realistic
helical wiggler and ion-channel guiding in three
dimensions, no calculation has been reported. This topic
has been studied in this paper. Because of nonlinear
calculations and three-dimensional form of the helical
wiggler, the present analysis offers more accurate results
compared to the one dimension at studies [10].

FIELD EQUATIONS

Helical wiggler magnetic field generated by a bifilar
helix can be expressed in cylindrical coordinates as
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B,,(x) = 2B, (2) [1'1(/1) cos y &, — %11 (D) sinyeq +
L) siny &, (1)

where B, (z) denotes the wiggler amplitude, k,, (=
2m/4,,) wiggler wave number, A = kv, x =0 — k,,z,
and I,, and [, denote the modified Bessel function of the
first kind of order n and its derivative.

It is assumed that the wiggler amplitude varies
adiabatically to model the injection of the beam by means
of tapered wiggler amplitude,

B,,sin? ("W—(Z)) 0<z<N,A,

B, (z) = 4N (2)
B,; Ny, <z <z

Ton-channel electrostatic field is described as

Ei(x'Y) = Zneni(x@x +yéy)’ (3)

where n; is the ion density.

In the absence of space-charge field, boundary
conditions in waveguide are satisfied by vector potential
expansion of orthogonal basis of cylindrical waveguide.
Therefore, the vector potential radiation field is written as
follows

o 1 . N
SA(x,t) = Y120 84;, (2) [m]z(’flnr) sina;,é, +
n=1 n

Ji(kp1) cos ay, éo], 4)
for the TE modes, and
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for TM modes, where for frequency w and wave number
k;n(z) we have

@ (2) = [} dz [k (2) + 16 — wt]. (6)

in equations (5-6), J, and J, show the regular Bessel
function of the first kind and its derivative, and x;,, denote
the cutoff wave number of each waveguide radius. For the
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TE modes J,(X;,) = 0, x;,, = X1n/Rg and for TM modes
Ji(xin) =0, Ky = x1/Ry, and R, is the waveguide
radius.

DYNAMIC EQUATIONS OF EVOLUTION

The dynamic equations for the slowly varying
amplitude and wave number of each mode are obtained
by substitution of vector potential in Maxwell's equations

(|72 - ——) 5A—V(V.54) = o] )
The microscopic source written as follows

J(x,t) = —enyv,, fng dxody,o, (xo, Vo)
T/2 Sle— oot
f/ dty 0 (t)V(Z; Xo, Yo, to) L tEX0Y0lo)] )

[vz(z;x0,50,t0)]

where v, is the initial velocity of electron, 4, (= T[R;) is
the cross section of waveguide, T = L/v,, is the period
of electron beam pulse, o,(xy,Yy,) and o(t,) are
distribution of initial conditions that may be obtained
from normalization conditions

fng dxodyoo, (xo,¥0) = Ay, ©
T
Jrdtoa(ty) =T (10)
2
and the time of the electron at space z that enter
interaction region at z = 0 and (X, o, to) is
2 az
T(Z; X0, Yo, tO) =t + -L m (11)

Substitution of microscopic fields and source current in
Maxwell's equations and then averaging over wave period
and orthogonalizing in r and 6, we obtain for TE modes

adain _

dz Fln(salna (12)
(i) ety
dz c? n n c28ary lvs)
dkip —2k. T, wlen (vlwl(n)_val(n ) (14)
dz In ln c28a, [vs]

where 8a;,, = e§A;,/mc?, w? = 4nye?/m, v, and v,
are the transverse components of the electron velocity in
rotating frame with wiggler.

ey =cosk,zeé,+sink,ze, s
e, = —sinky,ze, +cosk,ze, (5)

Hy,, Tlgli) and er(:_r) are
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Hin = (2, —12)JF Gem) (16)

T = E® sinyy, + 62 cos (17)

W = EP cos iy, — G sinyy, (18)

E® = 1 Gepr) cos(— 1)y £ Ji41 (i) cos (L + 1) x(19)
G = 1 () sinl — Dy % Jigq () sin(l + 1)y (20)

Vi = W0 + [ 2 [kin(@) + Uk, — 7] @)

Yy, is the pondermotive phase and (= —wt,) is the
initial phase.

The average of beam electrons on axial phase and
cross-section of waveguide is as fallow

() =
ﬁ f_nn. dll)o U(lpo) fng dTOdHOT‘OO'J_(rO, 90) ( ) (22)
ELECTRON ORBIT EQUATIONS

The electron orbit equations can be obtained by
substitution of the static fields in Lorentz force equation

v, = —e|E; + 6E +%x (B, + 6B)| (23)
where 6E = —%%SA and 6B = V X §A.

So the normalized components of velocities in wiggler
frame are

Dy % = —w?(Xcos Z + ysin z) — u,{20,,1; (1) sin y —
_ = _ . Sain
U3} + 2, Usl,(A) sin 2y — X al [(@ - klnv3)wln
2061, Dy (kinT)cos @y + T 3T ] (24)
Dy % = —w?(ycos Z — xsin Z) + {20,,1,() sin y —
e = 5 _
03}ty — D 83[1y(A) + 1,(2) cos 2] + Ty 52 [ (@ -
kinB)TS = 28101y (kinr)cosa, + Tnsw)y)]  (29)
_du; = _
2 f = 0,8 [, () + R (z) cos 2]~

whh () sin2y 1, — Zm [kzn(V1Wln - UZT( )) +
7n(ﬁ1T( )+ 5,w)] (26)
= 1 4
[in = 5027 00m (27)
where zZ=k,z, u=yv, v= v/c, ©=w/ck,,
Eln = kln/kw: Kin = Kln/kw: QW = eBw/ymCka’

Iin = I1n/k,, and @? = 2mn;e?/mc?k?2,. We also have
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U3 % = V,€0S Z — UySin Z (28)
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ay T 7]

d—z”‘:kln+l—ﬁ— (30)
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Here, there are three equations for velocity, (25-27),
two equations for transverse space of electron, (28-29),
and one equation for pondermotive phase, (30). These six
nonlinear differential equations that are coupled together
show the evolution of velocity and location of each
electron. Equations (12-14, 27) show the evolution of
amplitude and wave number of radiation. These equations
must be solved numerically simultaneously.

RESULTS OF SIMULATION

The set of coupled nonlinear deferential equations for
amplifier free-electron laser can be solved by forth order
Runge-Kutta method.

The averages in the dynamical equations can be
calculated by Nth order Gaussian quadrature technique
for each (ry, 89,1o). We choose N, = Ny = Ny, = 10, so
the simulation can be done for 1000 electrons.

It is clear that there is no energy spread in this
calculation.

At first, it is assumed that a uniform and single energy
electron beam with axial symmetry be injected into
system. The electrons are picked within the ranges
M <0y=m0=<yY,<2m,0 <Ry < Rpeam-

The initial growth rate for each mode is zero
[,(z=0) = 0] and we choose wiggler amplitude to
increase from zero. The initial wave number is equivalent

1
to vacuum [kln(z =0) = (w?/c? - Klzn)i].
For example, we select an amplifier with a 35GHz
wide-band that works at TE;; mode. The parameters are:
the amplitude of wiggler field B,, = 2kG, wavelength of

wiggler A, = 1.175 cm; electron beam with energy
250kev, current 35A, initial radius Rbeam = 0.155 cm;

waveguide radius R, = 0.36626 cm; input signal
frequency @ = 1.3 and power P;,,=10W [13]. Only TE;,
mode is chosen in this simulation.

Table 1: FEL amplifier with a 35GHz wide-band works at
TE; mode.

wiggler Amplitude 2 kG
Wavelength 1.175 cm
Energy 250 kev
Electron beam Current 35A
Initial radius | 0.155 cm
Waveguide radius 0.36626cm
Input signal frequency 1.3
power 10W
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In Figure 1, evolution of the radiation power as a
function of axial position is presented for group I orbit
parameters for ion-channel, @; = 0.3.
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Figure 1: Evolution of the radiation power as a function
of axial position.

Figure 2 shows the evolution of growth rate as a
function of axial position for w; = 0.3.
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Figure 2: Evolution of the growth rate as a function of
axial position.

As shown in Figure 1, power increases exponentially at
80.4 <z <178, and at this range the growth rate has a
constant value, approximately equal to 0.04; This shows
linear regime. Then power increases exponentially till
7z=207, which is the saturation point and radiation
amplitude does not increase any more. This time, half of
the electrons are confined in pondermotive potential
wells, give energy to the wave and the other half receive
energy from the wave. When both of them are equal,
saturation is done. This then radiation amplitude does not
increase and due to the reduced electrons energy,
radiation amplitude decreases.

CONCLUSION

A three dimensional simulation of a free-electron laser
in a steady-state amplifier model with negligible slippage
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is performed. A general form for a helical wiggler is
employed. An ion-channel is used for focusing of the
beam against the self-fields as well as for the efficiency
enhancement. Evolution of the radiation power and
growth rate of TE;; mode is studied.
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