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Abstract 
Power and growth rate for free-electron laser amplifier 
with realizable helical wiggler and ion-channel guiding 
are calculated using a three-dimensional simulation with a 
steady-state amplifier model. The final form of dynamical 
field equations is obtained by substitution of the vector 
potential at Maxwell’s equations. The electron orbit 
equations are derived by Lorentz force equation. The 
coupled nonlinear electron orbit equations and field 
equations have been solved numerically and finally, graph 
of power and growth rate are shown for TE  mode 

INTRODUCTION 
Many studies on the free electron laser, in the long 

wavelength regime, have used axial static magnetic field 
to enhance the gain. Also, for low-energy and high 
current electron beam, axial magnetic field or ion channel 
guiding is used to focus the beam against the self-field. In 
ion-channel guiding, by passing the relativistic electron 
beam through the ionized plasma, the plasma electrons 
will be repelled by ions and the ion will remain 
stationary; this ion core will direct the beam. This 
technique was first proposed by Takayama and Hiramatsu 
[1] for use in free electron laser and was tested first by 
Ozaky et al [2], and was evaluated by the numerical 
simulation [3,4]. Theoretical studies for ion-channel 
guiding and helical wiggler under appropriate conditions 
have shown to produce significant power. Steady-state 
trajectories of electron for helical wiggler and ion-channel 
guiding have been studied in one and three dimensions [5-
9]. In linear and nonlinear theory, many studies have been 
done on free electron laser with helical wiggler and ion-
channel [10-12]. In nonlinear theory, free electron laser 
with helical wiggler and axial magnetic field has been 
studied by Ferund et al [13] but at the presence of realistic 
helical wiggler and ion-channel guiding in three 
dimensions, no calculation has been reported. This topic 
has been studied in this paper. Because of nonlinear 
calculations and three-dimensional form of the helical 
wiggler, the present analysis offers more accurate results 
compared to the one dimension at studies [10]. 

FIELD EQUATIONS 
Helical wiggler magnetic field generated by a bifilar 

helix can be expressed in cylindrical coordinates as 

2
 (1) 

where  denotes the wiggler amplitude, 2 ⁄   wiggler wave number, , , 
and  and denote the modified Bessel function of the 
first kind of order n and its derivative. 

It is assumed that the wiggler amplitude varies 
adiabatically to model the injection of the beam by means 
of tapered wiggler amplitude, ;        0;                               (2) 

Ion-channel electrostatic field is described as , 2 ,  (3) 

where n  is the ion density. 
In the absence of space-charge field, boundary 

conditions in waveguide are satisfied by vector potential 
expansion of orthogonal basis of cylindrical waveguide. 
Therefore, the vector potential radiation field is written as 
follows , ∑

,  (4) 

for the  modes, and , ∑ ,  (5) 

for  modes, where for frequency  and wave number 
 we have ́  . (6) 

in equations (5-6),  and   show the regular Bessel 
function of the first kind and its derivative, and  denote 
the cutoff wave number of each waveguide radius. For the 
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 modes ́ 0, ́ ⁄  and for  modes 0, ⁄ , and  is the waveguide 
radius.  

DYNAMIC EQUATIONS OF EVOLUTION  
The dynamic equations for the slowly varying 

amplitude and wave number of each mode are obtained 
by substitution of vector potential in Maxwell's equations .   (7) 

The microscopic source written as follows , ,⁄ ; , , ; , ,| ; , , |   (8) 

where  is the initial velocity of electron,  is 
the cross section of waveguide, L⁄  is the period 
of electron beam pulse, ,  and  are 
distribution of initial conditions that may be obtained 
from normalization conditions , ,  (9) 

,  (10) 

and the time of the electron at space z that enter 
interaction region at 0 and x , y , t  is 

; , , ́́ ; , ,   (11) 

Substitution of microscopic fields and source current in 
Maxwell's equations and then averaging over wave period 
and orthogonalizing in r and θ, we obtain for  modes 

,  (12) 

| | , (13) 

2  | | , (14) 

where ⁄ , 4 ⁄ ,  and  
are the transverse components of the electron velocity in 
rotating frame with wiggler.      

  (15) 

,  and  are 

́́ ́  (16) 

  (17) 

  (18) 1 1 (19) 

1 1  (20) ́ ́   (21) 

 is the pondermotive phase and  is the 
initial phase. 

The average of beam electrons on axial phase and 
cross-section of waveguide is as fallow 

,   (22) 

ELECTRON ORBIT EQUATIONS 
The electron orbit equations can be obtained by 

substitution of the static fields in Lorentz force equation 

  (23) 

where  and .  
So the normalized components of velocities in wiggler 

frame are   22 ∑ ,2   (24)   22 ∑ ,2   (25) 22 ∑ ,
  (26) 

  (27) 

where , , ⁄ , ⁄ , 

 ⁄ ,  ⁄ , ⁄ , ⁄  and 2 ⁄ .  We also have 
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   (28) 

   (29) 

  (30) 

Here, there are three equations for velocity, (25-27), 
two equations for transverse space of electron, (28-29), 
and one equation for pondermotive phase, (30). These six 
nonlinear differential equations that are coupled together 
show the evolution of velocity and location of each 
electron. Equations (12-14, 27) show the evolution of 
amplitude and wave number of radiation. These equations 
must be solved numerically simultaneously. 

RESULTS OF SIMULATION  
The set of coupled nonlinear deferential equations for 

amplifier free-electron laser can be solved by forth order 
Runge-Kutta method.  

The averages in the dynamical equations can be 
calculated by Nth order Gaussian quadrature technique 
for each , , . We choose 10, so 
the simulation can be done for 1000 electrons.  

It is clear that there is no energy spread in this 
calculation.  

At first, it is assumed that a uniform and single energy 
electron beam with axial symmetry be injected into 
system. The electrons are picked within the ranges , 0 2 , 0 . 

The initial growth rate for each mode is zero  0 0  and we choose wiggler amplitude to 
increase from zero. The initial wave number is equivalent 
to vacuum 0 ⁄ . 

For example, we select an amplifier with a 35GHz 
wide-band that works at  mode. The parameters are: 
the amplitude of wiggler field 2kG, wavelength of 
wiggler 1.175 cm; electron beam with energy 250kev, current 35A, initial radius  0.155 cm; 
waveguide radius 0.36626 cm; input signal 
frequency 1.3 and power =10W [13]. Only  
mode is chosen in this simulation. 

Table 1: FEL amplifier with a 35GHz wide-band works at 
 mode. 

wiggler Amplitude  2 kG 

Wavelength  1.175 cm 

 

Electron beam 

Energy  250 kev  

Current  35 A 

Initial radius 0.155 cm 

Waveguide radius 0.36626cm 

Input signal frequency 1.3 

power 10W 

In Figure 1, evolution of the radiation power as a 
function of axial position is presented for group I orbit 
parameters for ion-channel, 0.3.  

 
 

Figure 1: Evolution of the radiation power as a function 
of axial position. 

 
Figure 2 shows the evolution of growth rate as a 

function of axial position for 0.3. 
 

Figure 2: Evolution of the growth rate as a function of 
axial position. 

 
As shown in Figure 1, power increases exponentially at 80.4 178, and at this range the growth rate has a 

constant value, approximately equal to 0.04; This shows 
linear regime. Then power increases exponentially till 
z=207, which is the saturation point and radiation 
amplitude does not increase any more. This time, half of 
the electrons are confined in pondermotive potential 
wells, give energy to the wave and the other half receive 
energy from the wave. When both of them are equal, 
saturation is done. This then radiation amplitude does not 
increase and due to the reduced electrons energy, 
radiation amplitude decreases.  

CONCLUSION 
A three dimensional simulation of a free-electron laser 

in a steady-state amplifier model with negligible slippage 

0 50 100 150 200 250 300

po
w

er
(W

)

kwz

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 50 100 150 200 250 300

G
ro

w
th

 r
at

e

kwz

MOPB06 Proceedings of FEL2010, Malmö, Sweden

66 FEL Theory



is performed. A general form for a helical wiggler is 
employed. An ion-channel is used for focusing of the 
beam against the self-fields as well as for the efficiency 
enhancement. Evolution of the radiation power and 
growth rate of  mode is studied.  
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