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Abstract

The coupled system of radiation interacting with a co-

propagating electron beam within an undulator of an FEL

exhibits many degrees of freedom. Only in an idealized and

simplified model can the FEL equations be solved analyt-

ically and a more complete description requires numerical

methods. Therefore numerical codes have been developed

along with the advances in FEL theory, starting from a sim-

ple 1 D model to today’s fully time-dependent 3D simula-

tions, utilizing large scale parallel computers. This presen-

tation gives a brief history of FEL simulation and addresses

the remaining challenges in FEL modeling which we hope

to solve in the near future.

INTRODUCTION

Numerical codes have become an integral component

to study and design Free-electron Lasers (e.g. [1] – [4])

worldwide. The underlying theory [5, 6] is rather complex

and allows analytical solution only under approximations.

The level of complexity increases with a more refined and

realistic model of the FEL which include effects such as

electron beam misalignment, undulator field errors, and

start-up from spontaneous radiation. In addition new con-

cepts (e.g. cascading Free-Electron Lasers [7]) are stud-

ied, which are following a rather inhomogeneous set-up as

compared to the ‘simple’ single undulator of a SASE FEL.

The paper gives a brief overview on the FEL model and

the most common approaches to solve it. It also discusses

some problems in FEL dynamics, which cannot be solved

with the current codes to a satisfying level, and how future

development can remove these limitations.

THE FEL MODEL AND ITS LIMITATIONS

This section presents the equations of motion for the

electron beam and the field equation for the radiation,

which are solved numerically by FEL codes. It has to be

noted that there is a slight variations in the FEL model from

code to code, depending on the underlying assumption or

level of details. However they have in common that they

solve a coupled set of ordinary differential equations for

the electrons and a partial differential equation for the radi-

ation field.

∗ sven.reiche@psi.ch

Electron Motion
The motion of the electrons are dominated by the pe-

riodic field of the undulator, enforcing a sinusoidal oscil-

lation. For a planar undulator the transverse, normalized

velocity βx of this oscillation is given by

βx =
K

γ
sin(kuz) , (1)

where γ is the Lorenz factor of the electron energy, K =
eByλu/2πmc the normalized deflection strength of the un-

dulator peak field By per period λu, and ku the undulator

wavenumber. This motion causes also a longitudinal oscil-

lation with βz =
√

1− β2
x ≈ 1− β2

x/2.

When overlapping with a co-propagating radiation field

with the amplitude E, phase φ, and the wavenumber k the

electrons is exchanging energy with the field according to

d

dz
γ =

KeEeiφ

mc2

(
eiθ + eiθ−2ikuz

)
(2)

with the definition of the ponderomotive phase θ = (k +
ku)z − ckt. It is convenient to express the longitudinal

position in terms of this ponderomotive phase and the lon-

gitudinal ’velocity’ becomes

d

dz
θ = ku + k

(
1− 1

βz

)
. (3)

Eqs. 2 and 3 describe completely the longitudinal dy-

namics of the electron motion, interacting with a radiation

field in an undulator. Note that the longitudinal velocity

βz depends implicitly on the electron energy, the fast os-

cillation of Eq. 1 as well as an additional ’slow’ betatron

oscillation, which has a much longer period and thus can

be assumed constant over a single undulator period.

The transverse motion is given by

d

dz
βx =

px

γmc
(4)

d

dz
βy =

py

γmc
(5)

d

dz
px = −mc

K

ku
cos(kuz) + Fx(z) (6)

d

dz
py = Fy(z) (7)

(8)

where px,y are the transverse momenta and Fx,y some

external focusing (e.g. by quadrupoles).
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Field Equation
Because the radiation field needs to have a good overlap

with the electron beam, its preferred direction of propaga-

tion is along the undulator axis. This allows to separate the

dominant oscillation of the field with exp(ik(z− ct)) from

the field equation and to express the field evolution as a

partial differential equation of the complex field amplitude

u = Exeiφ with

[
∇2
⊥ + 2ik

(
∂

∂z
+

∂

c∂t

)]
u = (9)

iec2μ0k
∑

j

δ(
r − 
rj)
K

γ

(
e−iθ + e−iθ+2ikuz

)

This approximation is called the ”Slow Varying Enve-

lope Approximation” (SVEA), which is also used for the

propagation of laser fields in free space [8].

Eikonal Approximation and Limitation
The coupled Eqs. 2 - 9 are called the FEL equations.

For a more refined model the electro-static field is added

to describe the effect of space charge. It requires to solve

another partial differential equation of type of an inho-

mogenious Laplace equation. The effective electric field

is then added to Eq. 2.

All equations of the FEL model oscillate with the undu-

lator period (except for the transverse motion in y) and a

solver must resolve this oscillation. This imposes a limi-

tation on the maximum possible integration step size Δz,

which has to be much smaller than the undulator period

λu. However the FEL amplification is a resonant process

and requires several undulator periods before a change in

the electron motion and radiation field amplitude becomes

noticeable. This is the reasoning to average the FEL equa-

tions of motion over the distance of an undulator period to

eliminate all fast oscillating terms. Only the resonant terms

remain and the integration step size can be increased to a

fraction of the characteristic scale of the FEL process, the

FEL gain length [9].

Because the unaveraged ponderotive phase as a longi-

tudinal oscillation, twice as fast as the transverse oscilla-

tion, the electron can couple to many frequencies in the

two exponential terms of Eq. 2 and 9. Collecting all terms

which are proportional to the fundamental frequency the

effective coupling of the electron beam is given by JJ0 =
J0(ξ) − J1(ξ)] with ξ = kK2/8γ2ku. The average equa-

tions are obtained when in Eqs. 2 - 9 the undulator param-

eter K is replaced with JJ0K and all terms with an ex-

plicit dependence on z (except for the external focusing)

are dropped.

This approximation defines an eikonal system of equa-

tions [10] and is the basis for most FEL codes. The limi-

tations are of course that the model becomes blind to any-

thing which occurs on the scale of the undulator period. It

also restricts the spectral resolution to a bandwidth around

the fundamental frequency ω = k/c.

An even further simplification is that no temporal vari-

ation is assumed in the electron beam and radiation field

amplitude. This is the steady-state model because the time

derivative drops out in Eq. 9. The field equation has the

form of an inhomogenious Schrodinger equation. In this

model, effects such as diffraction and impact of energy

spread, emittance and focusing can be studied. However

it is insufficient to model SASE FELs.

NUMERICAL METHODS
In this section, a brief description is given over the most

common algorithms, used in steady state FEL simulations

with macro particles. Time-dependent simulation offers an

additional complexity and thus has its own chapter devoted

to the problem of finite length electron bunches. The ma-

jor numerical challenges are: generating the particle distri-

bution, advancing the macro particle and solving the field

equation. Most of these are common with other simula-

tion codes, e.g. particle-in-cell (PIC) codes. However the

narrow bandwidth, Ångstrom resolution over up to 300 m

length of the undulator requires some adaptation of the al-

gorithm for the specific case of the Free-electron Laser.

Particle Distribution
Generating the particle distribution follows similar

strategies as particle-in-cell codes. Although a random dis-

tribution would be the most straight-forward solution, a

quiet loading mechanism is typically used to reduced the

number of macro particles while keeping the numerical

noise under a acceptable limit (e.g. charge discretization

on a grid for space charge calculation).

The particle loading is done in three steps: creation of

a uniform n-dimensional distribution, transformation into

the desired distribution, and applying the shot noise in a

controlled manner. Because the particle distribution has

to resolve sub-wavelength current and energy modulation

a direct import from other tracking programs such as EL-

EGANT [11] is not possible without some extensive ma-

nipulation of the external distribution. Nevertheless it is

required for a fully consistent start-end simulation of the

FEL, and most of the codes have adopted a strategy to im-

port external distributions.

Quiet Loading of a Uniform Distribution
Because the internal labeling of the particles has no rele-

vance for the simulation, sequence elements, can be freely

reordered. Guaranteeing no correlation between succeed-

ing sequence elements, such as the random number gener-

ator, is not needed. Instead codes are using quasi-random

sequences [12], which are highly correlated within its own

elements but avoids any correlation with other sequences.

The most popular sequence is the Halton sequence [13],

which is a generalization of the bit-reversal technique for

an arbitrary n-base system to represent numbers, such as

n = 2 for the dual system, n = 8 for the octal system or

n = 10 for the decimal system. In the Halton sequence,
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a running index is encoded in a representation of the base

n. Then the order of the digits are reversed and the fraction

point is put in front. Tab. 1 shows the first elements for the

base n = 5 as an example.

Index Index (5-base) Fractional (5-base) h5

1 1 0.1 0.2

2 2 0.2 0.4

3 3 0.3 0.6

4 4 0.4 0.8

5 10 0.01 0.04

6 11 0.11 0.24

7 12 0.21 0.44

8 13 0.31 0.64

9 14 0.41 0.84

10 20 0.02 0.08

· · · · · · · · · · · ·

Table 1: Halton Sequence h5 for the base n = 5.

The power of the Halton sequence is that the least sig-

nificant digit is converted to the most significant digit due

to the reversal in the order of the digits. Thus the sequence

provides rapidly varying elements within the open interval

of zero and one and fills out the uniform distribution rather

evenly and fast.

To avoid correlation with other sequences, the bases

should be chosen differently. In particular it is re-

commended to use prime numbers for different sequences

to avoid accidental correlation between sequences, which

shares common factors.

Transformation of a Uniform Distribution
Once an n-dimensional uniform distribution is generated

it is transformed to the desired distribution. Most com-

mon are Gaussian distributions, but parabolic and Lorenz

distribution are used as well. There are several methods,

which can be applied. The most direct method is to feed

the uniform distribution into the integral of the inverted

probability function or by rejection method for some spe-

cific functions [14]. Another method is the joint probabil-

ity distributions [15]. Gaussian distributions are typically

generated with the last method. However, it does not pre-

serve the quiet loading of the Halton sequence [16]. It is

recommended to use the inverted probability distribution

whenever possible, even if requires more computational ef-

forts.

Shot Noise
The SASE FEL is driven by the intrinsic shot noise in

the current due to the finite number of electrons per wave-

length. For most cases the wavelength is much shorter than

the bunch length and any correlation of the electron beam

over a radiation wavelength can be neglected. The longitu-

dinal position can be regarded as purely random. The cor-

responding bunching factor b = (1/Ne)
∑

exp(iθ) fluctu-

ates for from slice to slice with

< b >= 0 (10)

and

< |b|2 >=
1

Ne
(11)

with Ne the number of electrons per slice. If a random gen-

erator is used to generate the shot noise the fluctuation in

the bunching factor is given by the number of macro par-

ticles with Np ≤ Ne. Therefore all shot noise algorithms

remove any residual fluctuation from the quiet loading and

then apply the shot noise in a controlled way.

The general idea is to allow an additional degrees of free-

dom, which represent the bunching of a group of electrons

when represented by a macro particle in the simulations. It

can be either the value of the bunching factor directly or by

adding a dipole component [17], defined by the amplitude

and distance of two opposite charge particles.

The most common approach though is to group several

macro particles into a beamlet. The macro particle are

evenly distributed over the ponderomotive phase while all

other dimensions have identical values. Then a small varia-

tion in the longitudinal position θ is applied, either follow-

ing a uniform distribution [18] or a sinusoidal modulation

with

θ → θ + 2bj sin(θ + φj) , (12)

where bj and φj are derived from a negative exponential

and uniform distribution, respectively, for the jth beamlet.

The latter method has the advantage that it can also be gen-

eralized for higher harmonics [19]. Alternatively the indi-

vidual charge of the macro particle can be varied for the

same results [20].

Beamlets have the advantage that once they have been

generated, the rest of the simulation does not require the

distinction between beamlets and the macro particles in a

given beamlets. Thus the grouping into beamlets can be

dropped. On the other hand, the number of macro parti-

cles per beamlet limits the maximum harmonic due to the

mirroring process in the quiet loading for the ponderomo-

tive phase. As an examples with 1 macro particles and 3

mirrored particles per beamlet, the fundamental and sec-

ond harmonics are suppressed by the even spacing be-

tween these macro particles. However the evaluation of

the bunching factor at the 4th harmonic would add up all

macro particles coherently in phase even before applying

the shotnoise modulation. Therefore these simulations re-

quire at least twice the number of macro particles per beam-

let than the harmonics to be resolved. This is still a problem

for large HGHG cascades where the final harmonic number

can be of the order of hundred or higher.

With the methods briefly described above, the shot noise

value per beamlet is static and preserved over drifts. How-

ever, recent theories have shown that this ”static” modeling

might be not sufficient [21] for some schemes to experi-

mentally control the shotnoise, where in addition a energy

modulation per beamlet is require to allow for the bunching

Proceedings of FEL2010, Malmö, Sweden MOOCI1

FEL Theory 167



factor to grow or decay over distance while still preserving

the shot noise statistic at any position.

Particle Tracker
The most common solver to be found is the Runge-Kutta

solver [22] in forth order, either with fixed or adaptive step-

size. It is has the advantage of being very stable and ro-

bust, but not necessarily ”intelligent” to adapt to the ”envi-

ronment” with the most efficiency. As an example it will

use almost the same computational time for drift spaces

between undulator modules as in the undulator modules

themselves.

Transverse motion is split into the fast oscillation of

the undulator field, which couples with the radiation field,

and the ”slow” betatron, which is defined by the focus-

ing properties of the undulator beam line with alternating

quadrupoles and the natural focusing of the undulator itself.

The betatron motion is rather secondary, because the core

FEL dynamics occurs in the longitudinal phasespace by en-

ergy modulation and bunching. Thus, the transverse mo-

tion can be split from the longitudinal and advanced with

transport matrix to first order. It has been shown that for

the FEL dynamics higher multipole components does not

affect the FEL performance unless they are dialed up to

an excessive level, which are highly unlikely for a normal

FEL configuration. Using this symplectic solver for the

transverse variables allows for the a faster execution be-

cause the more time-consuming algorithm are only applied

for the ponderomotive phase and particle energy.

Because the fast oscillation has been incorporated into

coupling constants in the FEL equations the FEL problem

is reduced to a slow process with the gain length as its

characteristic length. This would allow for more advance

solver which optimize the integration step width with re-

spect to the numerical precision, e.g. in drift section with

no coupling to the radiation field, the integration step size

could be increase to quickly advance to the next undu-

lator section. Algorithms like the Gear-predictor [23] or

the Burlisch-Stoer [24] methods are self-optimizing solver,

which have the maximum efficiency for smooth systems

with slow changes in the differential equations. However

in X-ray FELs, where the computational efficiency is de-

sired the most, the external focusing by quadrupoles pre-

vents a fast calculation because these solvers are trying to

resolve the physical length of the quadrupoles, which are

typically of the order of a few undulator periods and thus

much shorter than the gain length. As a result the aver-

age integration step size would be smaller than theoreti-

cally possible for the exponential growth of the FEL and the

advantage over the more robust solvers, such as the Runge-

Kutta, dimishes with little motivation for the developer to

implement these algorithm in the codes.

Field Solver
Except for one dimensional codes, where the field equa-

tion is treated like an ordinary differential equation, the

field solver for a partial differential equation offers the

highest numerical challenge. The continuous field has to

be discretized to handle the information to describe the

wavefront. This is typically done by expanding the field

into a set of orthonormal modes such as Gauss-Hermite or

Gauss-Laguerre modes (Finite Mode Solver) or by defining

the field wavefront on a transverse grid (Finite Difference

Solver).

The Finite Mode has the advantage that it isn’t necessar-

ily limited to a boundary condition unlike the grid edge in

a Finite Difference Solver. There can be modes, which ex-

tends to infinity (Gauss Hermite modes), but also modes,

which follow a particular aperture or vacuum chamber,

such as a waveguide. The strongest advantage is in con-

nection to further transport of the radiation field through

a long drift or optical cavity, making this approach most

attractive for simulating FEL Oscillator configuration.

However there are also some drawbacks. Certain sets of

modes, such as the Gauss Hermite, are not unique. They

have the complex source point as a free parameter and a

given wavefront can be represented by a few modes in one

set but has many higher modes in another. Thus the num-

ber of modes with significant amplitude can be high if the

source point is not chosen well. To avoid this problem

an optimization algorithm could change the source point

per integration step so that the number of modes stays low

[25]. Another drawback is the calculation of the source

term. Normally there is no fast calculation, which could

reuse the coupling of the electrons to a previous calculated

mode in some form the current mode. The total computa-

tional effort scales with N ×M where N and M are the

number of macro particles and modes, respectively.

Finite Difference are more common and several ad-

vanced algorithms have been developed since the dawn of

numerical physics. The basic idea is that the field is dis-

cretized at grid points and that the differential operator are

substituted with difference operators. The general rules to

discretize the difference operators is given by Gauss law

with ∫
A

∇2udA =
∮

∂A


∇u · 
nds (13)

where A is the area associated to a grid point, ∂A the edge

of is grid, and 
n a unit vector, which is normal to the edge

and points outward. For a 2D Cartesian grid the Laplace

operator at the grid point with the indices i and j is

∇2ui,j ≡ ui,j+1 + ui,j−1 + ui+1,j + ui−1,j − 4ui,j

hihj
,

(14)

where hi and hj are the grid spacing in the both direction,

respectively. The basic idea of finite difference methods

is to convert the partial differential equation into a matrix

equation, where the grid point are access in a given order,

forming a vector with 
u = (uk) = (ui(k),j(k)).
One degree of freedom is, where within the integration

step the transverse Laplace operator is evaluated. It can be

fully explicit before the field is advanced in z, fully implicit
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after the field has been advanced, or a weighted sum of

both. The latter yield the general field equation, expressed

in Matrix form notation:

[
αL + i

2k

Δz
I
]


ul+1 =
[
(α− 1)L + i

2k

Δz
I
]


ul + 
sl (15)

where the upper index l indicates the step along the undu-

lator axis, L the matrix representation of the Laplace oper-

ator, Δz the integration step size and 
s the source term by

the electrons.

The fully explicit solution (α = 0) allows to calculate

the new field values directly with minimum effort, but un-

fortunately is an unstable solver. Stability analysis shows

that a value of at least α ≥ 1/2 has to be chosen for a stable

solution [26]. The highest stability occurs for α = 1 which

clashes with the highest precision at α = 1/2.

The problem is solved once the inversion of the matrix

[αL + 2ik/ΔzI] is done. While this matrix is sparse with

most matrix elements being zero, the inverted matrix is not.

Therefore it is not recommended to calculate the inverted

matrix and then multiply to the RHS of Eq. 15. Instead the

algorithms solve for 
ul+1 directly.

There are many methods to solve the matrix equation and

a detailed discussion is beyond the scope of this book. In

general there can be classified as direct solver or iterative

solver. Direct solver are finding the exact solution. If the

matrix is of tridiagonal shape [27], with non zero elements

only in the center diagonal and the diagonals above and be-

low, the system can be solved by successively scaling a line

and subtract it from the line below to eliminate elements till

the last line is reached with a simple identity for one field

grid point. Then the system is rolled back, inserting the

now known values for the grid points. A tridiagonal sys-

tem occurs for a single dimension in the transverse plane

(e.g. radial grid). Higher dimension can be solver with the

Alternating Direction Implicit (ADI) methods [28], where

for each dimension a fully implicit sub-step is done, while

the rest of the dimensions is treated explicit. Then a tridi-

agonal shape of the Laplace operator is enforced and can

be solved.

Iterative solver are trying to find a solution which isn’t

exact but within a reasonable error margin. The advantage

is that a single iteration is reasonable simple and fast and

thus allows for many iterations for the same computational

effort as a direct solver. For convergence to the correct so-

lution all recursion methods require diagonal dominance

of the matrix equation to be solved [29], which is trivially

fulfilled for the FEL field equation. The iteration process

can be regarded as an averaging/relaxation process over

neighbor field point, where after a few iteration the error

has been averaged out to a negligible value. This averag-

ing process can be optimized by a careful ordering of the

grid points, enhancing the correction per iteration (succes-

sive over-relaxation [30]) and the extrapolation to multiple

coarser grids (Multigrid Methods [31]). A detailed descrip-

tion would be beyond the scope of this paper.

HARMONICS

While the period-average FEL equations allows for large

integration step sizes it has its drawbacks, which are mainly

the suppression of harmonics in the par-axial equation for

the field evolution. In the rest frame, defined by the ”ef-

fective” particle energy γz = γ/
√

1 + K2/2 the electron

is performing a figure-eight motion, which allows the emis-

sion of odd harmonics in addition to the fundamental wave-

length. The coupling to higher harmonics becomes more

pronounced with larger values of K � 1.

There are also additional mechanisms how the electron

beam can couple to harmonics, including even ones [32]:

Variation of the radiation field over the finite extension of

the wiggling amplitude, ”slow” transverse motion due to

the betatron oscillation and due to the transverse gradient

in the charge distribution of the electron beam.

In the period-average equations, the effective coupling

has to be calculated for each harmonics with a Fourier

analysis of the electron motion. As an example for a co-

propagating wave, the longitudinal oscillation of the figure-

8 motion prevents the electron to stay synchronized with

the radiation field. This is expressed by a reduced coupling

to the field, depending on the harmonics with

JJn = (−1)
n−1

2 [Jn−1
2

(ξ)− Jn+1
2

(ξ)] (16)

with ξ = nka2
w/4γ2ku. Similar terms arise for the cou-

pling through the betatron motion, though it scales in addi-

tion to the transverse divergence of the electron. Noticeable

coupling arises from a misaligned electron beam as well in

the typical FODO lattice configuration of the undulator for

soft and hard X-ray FELs.

In the simulation the harmonics are treated as indepen-

dent radiation fields. Depending on the sample rate of the

electron beam (in the ideal case it is once every wave-

length) the absolute bandwidth of each harmonics is the

same, but on the relative scale it shrinks with higher har-

monics. This causes the problem that the energy accep-

tance in the electron beam detuning is more stringent for

harmonics than the fundamental in order to keep the reso-

nant wavelength within the bandwidth. This effect is even

enhance if a low sampling rate is chosen to keep the amount

of samples within a reasonable limit in the case of X-ray

FELs at around 1 Ångstrom.

For SASE FELS simulations it is a good approximation

that the self-consistent interaction of the harmonics with

the electron beam can be neglected once the growth in the

bunching factor is driven by the non-linear dynamics of the

fundamental [33]. This allows for a faster execution be-

cause only the fundamental field is used for advancing the

electrons and only the paraxial equation for the fundamen-

tal and the harmonic under consideration is solved. It also

keeps the memory demand, to hold the radiation field, on a

manageable level.
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TIME-DEPENDENT SIMULATIONS
The request for time-dependent simulations implies a

new level of complexity. In the addition to the transverse

direction the radiation field and the electron beam is sam-

pled at many longitudinal positions. The distance between

sample points defines a slice. While steady-state simula-

tions only model a single slice, assuming periodic bound-

ary condition, time-dependent simulations can easily re-

quire ten thousands of slices or more, depending on the

bunch length and the resonant wavelength. With this huge

increase in the data size to model the electron bunch and

radiation field the codes require an efficient memory man-

agement to over come the limitation of computer resources

in the past.

A second aspect is that the field equation is now a mixed

partial differential equation with second and first order

derivatives. A self-consistent field solver would be differ-

ent than the steady-state solver, described previously in this

paper. Second it would require the entire radiation field

and electron beam to be in memory for each integration

step. This can be done only with the support of a computer

cluster where the memory demand is distributed over many

nodes. Recently, some initiatives have been done following

this approach. They are described briefly in the last section

of the paper.

A simpler algorithm exists if two approximations are

made. The first assumes that information can only prop-

agate in the forward direction, namely by the slippage of

the radiation field by one radiation wavelength per undula-

tor period. The slippage over the entire undulator length is

called the slippage length.

Secondly, the field equation can be split into two steps

with first solving the impact of diffraction and the contri-

bution by the source term s (emission from the electron

beam) with [

∇2
⊥ + 2ik

∂

∂z

]
u = s (17)

and the effect of slippage with

[
∂

∂z
+

∂

c∂t

]
u = 0 . (18)

The latter is solved by any function with the argument

f(z − ct), which is in the co-moving frame of the elec-

tron beam a shift of the radiation field by one slice over

an integration distance of one undulator period. The for-

mer equation is identical to the steady-state problem and

the same algorithm can be used in this two-step process.

With this assumption the problem can be solved by pro-

gressing through the electron bunch from the end to the

head. Because the last slice has either no seeding field

(SASE FEL) or a well defined, external field (FEL Am-

plifier), the electron slice can be tracked through the un-

dulator. At each step the field is updated due to the inter-

action with the electron slice and than advanced forward,

temporarily stored till it is feed to the next electron slice

after the previous slice has been tracked through the entire

undulator. It can easily be seen that the radiation field over

the full slippage length and a single electron slice needs to

be stored at anytime, which is typically less than the full

FEL pulse length for VUV and X-ray FELs.

The resulting algorithm, which loops through the elec-

tron bunch slice by slice, is valid as long as some con-

straints are fulfilled:

1. The difference in the diffraction over the distances λu

and λu + λ is negligible.

2. The integration step size is much shorter than the gain

length to avoid ’FEL amplifier’ effects.

3. The radiation field has at least a small degree of longi-

tudinal coherence, so that the periodic boundary con-

dition in the steady-state solver are valid.

The first condition is typically fulfilled for most FELs. The

second requires that the radiation field is passed through

many slices, so that it cannot act upon itself with a single

slice. Otherwise numerical artifacts such as detuning in a

chain of ’mini’ FEL amplifiers become dominant. The last

condition is invalid for the start-up process of a SASE FEL

with no longitudinal coherence. However there are ’hot

spots’, which emits on a higher level than in average. This

emission occurs almost unchanged over a fraction of a gain

length before the FEL amplification becomes noticeable.

At that point longitudinal coherence has been sufficiently

build up in these hot spots. The period boundary condition

of the radiation field over a short distance has become valid.

This algorithm loops over the electron bunch and undu-

lator in discrete steps, which the undulator being the inner

loop. While this allows for the least amount of required

memory it also suffers from the drawback that the current

profile is fixed over the entire undulator length because the

slices cannot exchange particles. In particular those who

are falling back and slipping into the given slice would re-

quire the knowledge of the slice ahead.

Therefore some codes have changed the loop order with

the inner loop pointing along the electron bunch. Though

much more data space is required, only one radiation and

electron slice has to be in memory while the rest is tem-

porarily stored on an external hard disk. This allows in the-

ory to exchange particles/beamlets among slices after each

integration steps. However the sorting and rebinning algo-

rithm of GBytes of macro particles can be computationally

expensive as the FEL simulation itself.

NUMERICAL CHALLENGES
While existing FEL codes had tremendous success to

reproduce results from FEL experiments and have been

benchmarked well, there are some novel ideas for FELs,

which will be hard to model due to the limitation in the

core algorithm. This chapter lists a few examples, which

offer a numerical challenge for the existing FEL codes and

most likely become the driving force to extend the codes or

to develop new ones (see next section).
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High Current Electron Beams
Electron beams, generated by the injection of a fem-

tosecond laser pulse in a plasma, have a length on the mi-

cron level with large peak currents of above 10 kA [34].

Despite energies of up to 1 GeV the space charge is strong,

which causes a growth in the energy spread and elongation

of the electron pulse. This is even enhanced due to the dis-

persion in the undulator and the effective reduction of the

electron energy with γz = γ/
√

1 + K2/2.

The numerical problems is twofold. One is the self-

consistent calculation of the space charge field, which has

a significant impact on the electron dynamics. Normally

FEL codes include only the space charge field on the reso-

nant wavelength because it determines the work to be done

by the FEL process to push electrons together to micro

bunches against the electro-static field. For the ’long range’

space charge field a self-consistent solver has to be adapted

by the codes.

The second problem is the strong change in the longi-

tudinal position of the macro particles, in particular in the

head and tail of the bunch. This implies a mixing of macro

particles of different slices. A sorting procedure transfers

macro particles, which are outside of the electron slice, to

the corresponding new slice. Besides the penalty of sorting

and redistributing electrons, the charge per macro particle

has to be the same for all slices. Although this seems natu-

ral from a Particle-in-Cell code, enforcing the same charge

can result in unbalanced load of nodes a the parallel version

of the code.

Short Pulse Operation and Energy Chirp
The FEL equations are derived under the assumption of

a slow varying amplitude. That allows to expand the radia-

tion field around a resonant wavelength and thus removing

any fast oscillation terms in the field equation. The field

and the electron bunching is sampled once every wave-

length and assumed to be constant over one wavelength.

Therefore any substructure is not allow as well as any

changes in the radiation amplitude.

The latter becomes a problem for the superradiant

regime above the saturation power level for a spike [35].

The amplitude is growing but the spike has the tendency

to get shorter due to the superradiant process. At a point

the amplitude rises so quickly that frequency components

of the pulse can lie outside of the simulation bandwidth.

Instead further shortening, the FEL algorithm numerically

filters the signal thus preventing the pulse to become short.

This has been verified with simulations [36], which do not

rely on the bandwidth limitation of the period-averaged

equations.

A similar problem is to model an energy chirp correctly.

While a linear chirp and dispersion yield a smooth com-

pression within the undulator the periodic boundary condi-

tion of a given slice in the FEL model, converts the chirp

into a saw-tooth distribution in longitudinal phase space.

Along the undulator the macro particle distribution would

bunch with the resonant wavelength, causing an unphysi-

cal level of coherent emission. To avoid this problem, an

energy chirp can only be described by a stair-like distribu-

tion, where each step belong to an electron slice. Now the

slices would not bunch, however the different mean energy

per slice would cause an overlapping of the slices, mimick-

ing the compression. A sorting and rearranging of particles

would be difficult without generating unphysical phases-

pace distributions. Note that the problem also occurs in the

high current beam case, described above, where the strong

space charge field induces an energy chirp naturally.

Large Harmonic Conversion
Echo-enabled Harmonic Generation (EEHG) [37] or a

cascade of several stages of High Gain Harmonic Genera-

tion (HGHG) can yield very high harmonic conversion in

the order of 50 and higher, pushing the modeling of har-

monics to a limit. First the simulation must carry all har-

monics from the beginning to avoid artificial noise when

performing the harmonic conversion. In addition the elec-

tron beam has its finest sampling with the long wavelength

of the initial seed laser. As a result the thickness of the elec-

tron slices remains the same over the entire cascade and the

final bandwidth, resolved by the simulation is a few percent

or even less. Even the slightest variation in the beam en-

ergy can shift the resonant wavelength out of the resonant

bandwidth.

EEHG has also the problem that after the first stage, a

beamlet is violently distributed over many slices. There-

fore the concept of beamlet breaks apart (However ignoring

this and enforcing periodic boundary condition have given

reasonable results for estimating the EE HG performance

numerically). As for the HGHG cascade, rearranging the

particles seems straight forward but would introduce too

much numerical noise as well as correlation over the wave-

length.

OUTLOOK
With growing, accessible computer the utilization of par-

allel computers or distributed computing allow for new and

more precise algorithms. In this last section a few promis-

ing concepts are described, which could lead to the next

generation of FEL codes. They will be written with parallel

computer architecture code in mind, unlike existing codes,

which have been ported from a single processor machine

and thus remain a single processor core inside.

One approach is to drop the period-average equation and

resolve the electron motion on a finer scale [38]. Although

this restricts the integration step size to a sub period length

the increase in the computational power compensates for

it. This Ansatz is attractive because it removes the need

to model the harmonics as individual fields. Instead only

one field representation is needed with combines the infor-

mation of the fundamental and the harmonics. Effects as

the narrowing of a superradiant spike can be modeled cor-

rectly. Because the entire field is advanced in a single step,
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the codes allows for particle distributions with a substruc-

ture on a scale smaller than the wavelength (e.g. energy

chirp).

An interesting idea is to overcome the large disparity

between undulator length and electron bunch. By a care-

ful chosen Lorentz transformation the bunch length is in-

creased while the undulator field becomes an incident ra-

diation field with the same length as the bunch length in

the new frame [39]. This is the smallest possible domain

suitable for a traditional particle-in-cell code approach.

Using the distributed memory of a cluster, the entire field

information and electron distribution can be stored in mem-

ory while resolving each individual electron. With around

10 billion electrons as an upper limited for an FEL pulse a

total memory of 500 GByte would be require to hold the en-

tire distribution. The field information is about of the same

order for an Ångstrom FEL or even less for longer wave-

length. This demand can be fulfilled by cluster of the size

of 500 nodes and more, which is not considered large by

today’s size of supercomputers. In these one-one simula-

tion a lot algorithms can be simplified to a trivial level, e.g.

a random number generator could be used to generate the

particle distribution, while providing the correct bunching

factor at any wavelength, including the coherent enhance-

ment by the bunch shape at longer wavelength. Also the

resorting of particles (in particular for violent redistribution

in an EE-HG) is simplified.

In conclusion it can be expected that in the near future

numerical tools will be develop to master the remaining

challenges left in FEL beam dynamics.
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