

Paper presented at the 31st International Free-Electron Laser Conference Liverpool, England, 23-28 August 2009

Efficiency and spectrum enhancement in a tapered free-electron laser amplifier*

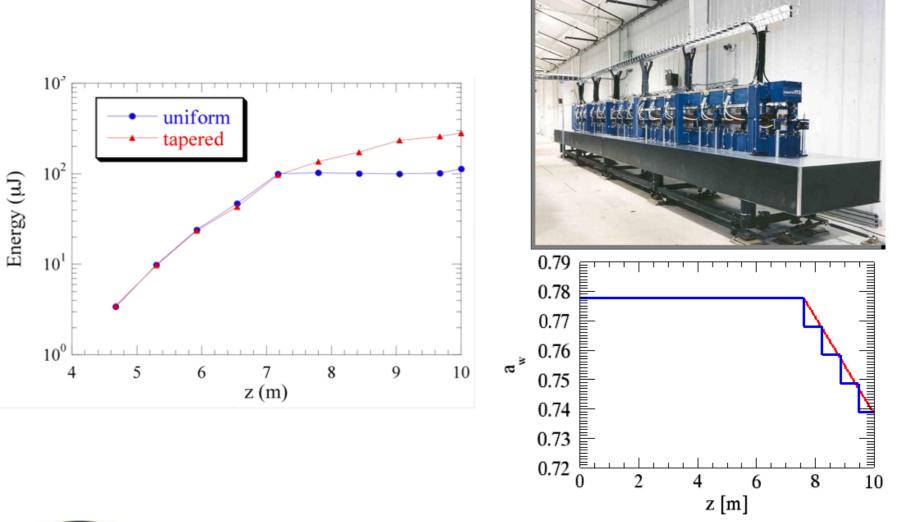
X.J. Wang¹, H.P. Freund², D. Harder¹, W.H. Miner, Jr.², J.B. Murphy¹, H. Qian1,Y. Shen¹, and X. Yang¹ ¹National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 ²Science Applications International Corp., McLean, VA 22102

*This work is supported in part by the Office of Naval Research (ONR), the Joint Technology Office, and U.S. Department of Energy (DOE) under contract No. DE-AC02-98CH1-886.



THE NSLS SOURCE DEVELOPMENT LABORATORY (SDL)

The Source Development Laboratory (SDL) is a laser linac facility consisting of RF synchronized Ti:sapphaire laser system, high-brightness electron source, 300 MeV linac and FEL undulators. It is an ideal platform for laser seeded FEL amplifier R&D.

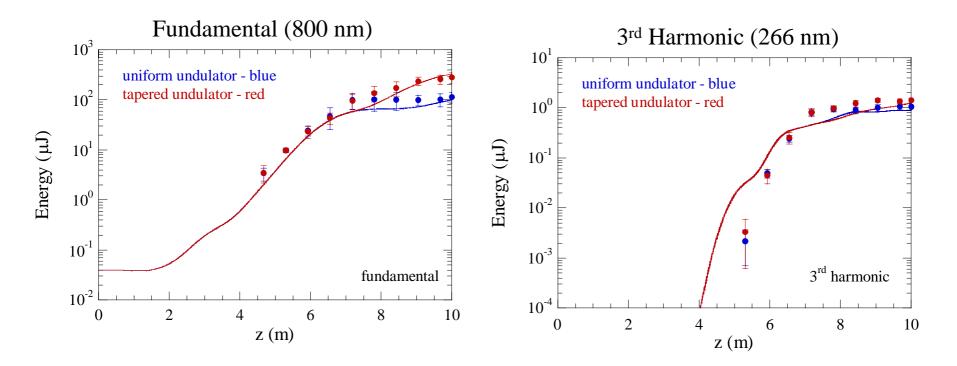


NATIONAL LABORATORY

EXPERIMENTAL PARAMETERS

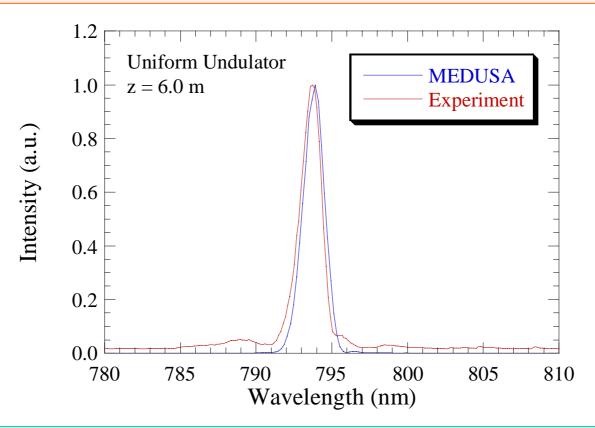
Electron Beam	
Energy	101.37 MeV
Bunch Charge	350 pC
Peak Current	250-350 A
Bunch Duration	1-2 psec
Energy Spread	0.1%
Normalized Emittance	3-4 mm-mrad
Undulator (NISUS)	
Period	3.89 cm
Peak Amplitude	3.016 kG
K	0.775 (rms)
Length	10.0 m
Start-Taper Point	7.0 m
Taper Magnitude $(\Delta B_w/B_w)$	-4%
Radiation	
Wavelength	793.5 nm
Seed Power	10 kW

- Fully 3-D
- E&M fields treated using the polychromatic SVEA approximation
 - Time-dependent and/or polychromatic physics
 - Modal decomposition of the fields
 - Amplifier/Oscillator
- Particle dynamics are treated from first principles (not KMR)
 - Harmonics & sidebands implicitly included
 - Start-Up from Noise Distribution
- Can easily add of new features for Engineering Design Evaluation
 - New wiggler models
 - New beam models
- For present simulations, MEDUSA was run with:
 - Time-Dependent Mode with 3rd harmonic
 - 700 slices/69984 particles per slice
 - Integration window of 7 psec
 - Electron bunch length of 1.8 psec parabolic pulse
 - Seed laser pulse length of 6 psec parabolic pulse



Good Agreement found between experiment and simulation

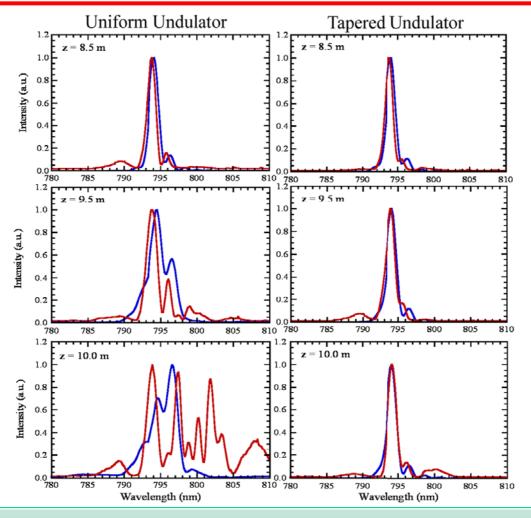
Dots are measured data & solid curves are the MEDUSA Simulation



SPECTRUM: EXPERIMENT & SIMULATION

Comparison made for uniform wiggler prior to saturation

Agreement between experiment & simulation is very good.



SPECTRUM: EXPERIMENT & MEDUSA UNIFORM & TAPERED

Agreement between experiment & simulation is very good.

- Efficiency enhancement observed for both fundamental and 3rd harmonic using a tapered undulator.
- There is a difference in efficiency enhancement between the fundamental (~300 %) and 3^{rd} harmonic (~50 %).
- Spectral enhancement and elimination of the side-band was experimentally characterized.

