



# Impact of a chirp and curvature in the electron energy distribution on the seeded Harmonic Generation FEL

Alberto Lutman,

G. Penco, P. Craievich, J. Wu, R. Vescovo





# Summary

Model description

- Mathematical derivation
  - Seeded FEL Green functions
  - Evaluation of the bunching
- An example for FERMI case



### **Model Description**







FEL 2009



# Mathematical derivation of the Green Functions



We start from:

S. Krinsky and Z. Huang derived the Green function for linear enegy chirped FEL PRST-AB Vol 6. 050702 (2003)

Vlasov-Maxwell system of equations

$$\begin{cases} \frac{\partial \psi}{\partial Z} + p \frac{\partial \psi}{\partial \theta} - \frac{2D_2}{\gamma_0^2} \left(Ae^{i\theta} + A^* e^{-i\theta}\right) \frac{\partial \psi_0}{\partial p} = 0\\ \left(\frac{\partial}{\partial Z} + \frac{\partial}{\partial \theta}\right) A(\theta, Z) = \frac{2D_1}{\gamma_0} e^{-i\theta} \int dp \,\psi(\theta, p, Z) \end{cases}$$

 $\psi(\theta, p, Z)$ 

Electron distribution function

A( heta,Z) Elec

Electric field envelope

$$p = 2\frac{\gamma - \gamma_0}{\gamma_0} \qquad \qquad \theta = (k_0 + k_w)z - \omega_0 t \qquad \qquad Z = k_w z$$



# Mathematical derivation of the Green Functions



We find  $\psi(\theta, p, Z)$  introducing a small perturbation  $\psi_1$ 

$$\psi(\theta, p, Z) = \psi_0 + \psi_1$$
  
$$\psi_0(\theta, p, Z) = \delta \left( p + \mu \theta_0 + \frac{1}{2} \nu \theta_0^2 \right) , \ \theta_0 = \theta - pZ$$



$$\psi_{1} = \frac{2D_{2}}{\gamma_{0}^{2}} e^{i\theta_{0}} \frac{\partial \psi_{0}(\vartheta_{0})}{\partial p} \int_{0}^{Z} e^{ip(Z_{1}-Z)} A(\theta - p(Z - Z_{1}), Z_{1}) + \frac{e^{i\theta_{0}} F(\theta_{0}, p)}{Electrons Distribution Initial Condition}$$



### Mathematical derivation of the Green Functions



Initial Condition 
$$e^{i heta_0}Fig( heta_0,pig)$$

#### We choose

$$F \propto \delta \left( p + \mu \theta_0 + \frac{1}{2} \nu \theta_0^2 \right)$$

Initial electron density modulation

#### Maxwell equation is solved in the Laplace domain

$$f(\theta, s) = \int_{0}^{Z} A(\theta, Z) e^{-sZ} dZ$$

$$\frac{\partial}{\partial Z} A(\theta, Z) \xrightarrow{\text{Laplace Transform}} s f(\theta, s) - A(\theta, 0)$$
Seed Initial Condition



## Mathematical derivation of the Green Functions



FEL radiation along the undulator

$$A(\hat{s},\hat{z}) = \int_{0}^{\hat{z}/2} \int_{\sigma-i\infty}^{\sigma+i\infty} \frac{d\hat{p}}{\pi i} e^{\hat{p}(\hat{z}-2\hat{\xi})+4i\hat{\beta}} \frac{\arctan\left(\frac{\hat{\alpha}-\hat{s}\hat{\beta}}{\sqrt{2i\hat{p}\hat{\beta}-\hat{\alpha}^{2}}}\right) - \arctan\left(\frac{\hat{\alpha}+\hat{\beta}(\hat{\xi}-\hat{s})}{\sqrt{2i\hat{p}\hat{\beta}-\hat{\alpha}^{2}}}\right) - 4i\frac{\hat{\alpha}-s\hat{\beta}}{2i\hat{p}-2s\hat{\alpha}+s^{2}\hat{\beta}} + \frac{\hat{\alpha}+\hat{\beta}(\hat{\xi}-\hat{s})}{(\hat{s}-\hat{\xi})(2\hat{\alpha}+\hat{\beta}(\hat{\xi}-\hat{s}))-2i\hat{p}}}$$

$$\times \left[A(\hat{s}-\hat{\xi},0) + \frac{D_{1}/(\rho\gamma_{0})F(\hat{s}-\hat{\xi})}{2\hat{p}+i(\hat{s}-\hat{\xi})(2\hat{\alpha}-\beta(\hat{s}-\hat{\xi}))}\right] d\hat{\xi} = \int_{0}^{\hat{z}/2} \frac{G_{seed}}{G_{seed}}A(\hat{s}-\hat{\xi},0) + \frac{G_{bun}}{G_{bun}}F(\hat{s}-\hat{\xi})d\hat{\xi}$$
We calculate the inverse Laplace transform to find the Green functions

$$\hat{z} = 2\rho Z$$
  $\hat{s} = \rho \theta$   $\hat{\alpha} = -\frac{\mu}{2\rho^2}$   $\hat{\beta} = -\frac{\nu}{2\rho^3}$   $\hat{p} = \frac{s}{2\rho}$   $\rho$ : Pierce Parameter



## Mathematical derivation of the Green Functions



Green functions are found by analytical inverse Laplace transforming without using approximations.

Green function for Seeded FEL with linear chirp and curvature:

$$G_{Seed} = \sum_{j=1}^{\infty} \sum_{W_l=0}^{J-\sum_{k=1}^{l-1} W_k} \frac{\left(\hat{z}-2\hat{\xi}\right)^{\sum_{h=1}^{\infty} hW_h+2J-1}}{\left(\sum_{h=1}^{\infty} hW_h+2J-1\right)!} \frac{\left(2i\hat{\xi}\right)^{J-\sum_{h=1}^{\infty} W_h}}{\left(J-\sum_{h=1}^{\infty} W_h\right)!} \frac{T(l)^{W_l}}{W_l!} + \delta(\hat{\xi}-\hat{z}/2)$$

Green function for Bunching with linear chirp and curvature:

Are expressed as polynomials

$$G_{bun} = \sum_{H=0}^{\infty} \sum_{j=1}^{\infty} \sum_{W_l=0}^{J-\sum_{k=1}^{l-1} W_k} \frac{\left(\hat{z} - 2\hat{\xi}\right)^{\sum_{h=1}^{\infty} hW_h + 2J + H + 1}}{\left(\sum_{h=1}^{\infty} hW_h + 2J + H + 1\right)!} \frac{T(l)^{W_l}}{W_l!} R(H) \delta_{(J,\sum_{h=0}^{\infty} W_h)}$$

$$T(m) = \sum_{n=0}^{m} \frac{i^{2n+m+1}(m+1)!(\hat{s}^{2m-n+1} - (\hat{s} - \hat{\xi})^{2m-n+1})\hat{\alpha}^n \hat{\beta}^{m-n}}{(2m-n+1)!2^{m-n-1}n!(m-n)!}$$

$$R(H) = \frac{D_1}{\rho\gamma_0} \frac{i^{3H+1}}{2^H} (\hat{s} - \hat{\xi})^H (2\hat{\alpha} - \hat{\beta}(\hat{s} - \hat{\xi}))^H$$





Comparison between the "exact" Green function and the saddle point approximated formula. (A.A.Lutman et al. J. Phys. A: Math. Theor. 42 (2009) 085405) 15 × 10<sup>4</sup> Approximated *Phase* [rad] 0 Exact Amplitude a.u. 10 -2 5 -6 Approximated Exact ŝ 0 FEL pulse velocity of centroid 8 2 4 6 FEL pulse evolution  $v_c - c$ С Periods For fixed values Amplitude a.u. of chirp and curvature ndulator -12 -14 ŝ T4 Z 12



# **Bunching Green function**



#### Green function plots



#### Peak electrc field envelope





#### **Bunching Amplitude**



L.H.Yu Physical Review A, Vol 44, N°8 (1991)

This formula does not take into account phase dependent energy spread induced in the non zero length modulator.



elettra Bunching at radiator entrance





FEL 2009





### Bunching Amplitude with respect to the fundamental

| Energy   | R56   | Energy<br>spread | Peak to peak<br>modulation |
|----------|-------|------------------|----------------------------|
| 1140 MeV | 30 µm | 150 keV          | 3 MeV                      |

| Bunching       | 1    | 10   | 20    |
|----------------|------|------|-------|
| B <sub>n</sub> | 0.45 | 0.14 | 0.023 |





#### Bunching Phase at radiator entrance

|                 | Energy   | Linear Chirp                | Curvature                                |
|-----------------|----------|-----------------------------|------------------------------------------|
| Flat Bunch (FB) | 1140 MeV | 0 MeV/fs                    | 0 MeV/fs <sup>2</sup>                    |
| Bunch 1 (B1)*   | 1140 MeV | 1.4 10 <sup>-5</sup> MeV/fs | 3.2 10 <sup>-6</sup> MeV/fs <sup>2</sup> |
| Bunch 2 (B2)*   | 1140 MeV | 2.2 10 <sup>-3</sup> MeV/fs | 6.5 10 <sup>-6</sup> MeV/fs <sup>2</sup> |

\* bunch configurations generated with LiTrack







## Electric Field Envelope Wianer Function after 400 radiator periods







#### Results:

+ Green function expression for FEL with energy chirp and curvature on the electrons starting from:

- Seed
- Bunching

+ Evaluation of the bunching at the radiator entrance in both amplitude and phase.

#### Work extensions:

- + Estimate the effect of resistive wall and roughness wakefields in the radiator
- + Full treatment with uncorrelated energy spread