Stochastic Temporal Behavior of SASE FEL

Samuel Krinsky BNL

FEL 2009, Liverpool, UK August 24, 2009

Acknowledgements

I have greatly benefited from collaborations with:

Ilan Ben-Zvi Robert Gluckstern Zhirong Huang Yuelin Li Li-Hua Yu

Early Work on SASE

C. Pellegrini and E. Saldin Suggested importance of SASE

K.J. Kim and J.M Wang & L.H. Yu 1-D Theory of Start-up from Shot Noise

K.J. Kim and S. Krinsky & L.H. Yu SASE Power in Guided Modes

SASE Saturation at LCLS

Spontaneous Undulator Radiation

Fundamental radiation wavelength Radiation bandwidth

$$\lambda_r = \frac{\lambda_w}{2\gamma_0^2} (1 + a_w^2)$$

$$\frac{\Delta\lambda}{\lambda_r} = \frac{1}{N_w}$$

Slippage distance

$$\ell_s = N_w \lambda_r$$

5

Shot Noise

 t_i : arrival time of jth electron at z=0

 t_j stochastically distributed over $0 < t_j < T_b$

6

Radiated Field in Linear Regime Before Saturation

Distributions for Instantaneous Power and Pulse Energy

Central Limit Theorem implies instantaneous power follows the Negative Exponential Distribution:

$$p(P) = \exp(-P / P_{av})$$

The energy in a single SASE pulse is

$$W \quad \left(z\right) \propto \int_{0}^{T_{b}} \left|E\left(z,t\right)\right|^{2} dt$$

Pulse Energy fluctuation

$$\frac{\sigma_{W}^{2}}{W^{2}} = \frac{\left\langle W - \left\langle W \right\rangle \right\rangle^{2}}{\left\langle W \right\rangle^{2}} = \frac{1}{M} \equiv \frac{T_{coh}}{T_{b}} \qquad T_{coh} = \sqrt{\pi} / \sigma_{\omega}$$

E. Saldin et al (1998)

L.H. Yu & S.Krinsky (1998)

TTF/DESY

9

Distribution of Pulse Energy: Gamma Distribution Distribution of Energy after Monochromator: Exponential Distribution

E. Saldin et al (1998)

Green's Function

In exponential regime, the Green's function (red) is well

approximated by a Gaussian (blue).

Simulation of Intensity and Phase Evolution

11

LEUTL: FROG Measurements

Distributions Characterizing Intensity Spikes

LEUTL: FROG Measurements

Pulses with the highest energy had lowest

time-bandwidth product (tbwp).

SASE Statistics: Time Domain

15

SASE Statistics: Frequency Domain

$$\begin{split} M &\cong 2 \,\sigma_t \,\sigma_{\omega} \\ \Omega_p &\equiv 2 \,\sqrt{\pi} \,\sigma_{\omega} \\ \Omega_{coh} &\equiv \Omega_p \,/\, M \cong \sqrt{\pi} \,/\, \sigma_t \\ \left< \delta \omega \right> &\cong \Omega_{coh} \,/\, \sqrt{2\pi} \\ \left< \Delta \omega \right> &\cong \sqrt{2\pi} \,/\, \sigma_t \end{split}$$

Number of Modes in Pulse Average Spectral Width Range of Spectral Coherence RMS Spike Width RMS Spike Separation

Mathematical Formalism

Wigner Function has Properties of Phase Space Density

$$W(t,\omega) = \int d\tau \left\langle E\left(t - \frac{\tau}{2}\right) E^*\left(t + \frac{\tau}{2}\right) \right\rangle \exp(-i\omega\tau) \quad \text{Wigner Function}$$

$$\left\langle \left| E(t) \right|^2 \right\rangle = \int \frac{d\omega}{2\pi} W(t,\omega)$$

Average Intensity

$$\left\langle \left| \tilde{E}(\omega) \right|^2 \right\rangle = \int dt W(t, \omega)$$

Average Spectral Intensity

$$W = \int \frac{dtd\omega}{2\pi} W(t,\omega) = \int dt \left\langle \left| E(t) \right|^2 \right\rangle$$

Integrated Intensity

Time Domain

Define Number of Modes M to be ratio of phase space area occupied by pulse divided by minimum phase space area $\frac{1}{M} = \frac{\int \frac{dtd\omega}{2\pi} W^2(t,\omega)}{\left(\int \frac{dtd\omega}{2\pi} W(t,\omega)\right)^2} = \frac{\int dt_1 dt_2 \left| \left\langle E(t_1) E^*(t_2) \right\rangle \right|^2}{\left(\int dt \left\langle |E(t)| \right\rangle^2 \right)^2} \qquad \left(M \ge 1\right)$ $\frac{1}{T_p} = \frac{\int dt \left\langle \left| E(t) \right|^2 \right\rangle^2}{\left(\int dt \left\langle \left| E(t) \right|^2 \right\rangle \right)^2}$ Pulse Width $T_{coh} = \frac{T_p}{M} = \frac{\int dt_1 dt_2 \left| \left\langle E(t_1) E^*(t_2) \right\rangle \right|^2}{\int dt \left\langle \left| E(t) \right|^2 \right\rangle^2} \quad \text{Coherence Time}$

Definition of Pulse Width

$$\frac{1}{T_p} = \frac{\int dt \left\langle \left| E(t) \right|^2 \right\rangle^2}{\left(\int dt \left\langle \left| E(t) \right|^2 \right\rangle \right)^2}$$

Top Hat Distribution: $\langle |E(t)|^2 \rangle = \begin{cases} E_0^2 & 0 \le t \le T \\ 0 & otherwise \end{cases}$ $T_p = T$

Gaussian Distribution:

$$\left\langle \left| E(t) \right|^2 \right\rangle = E_0^2 \exp \left(-\frac{t^2}{2\sigma_t^2} \right)$$

$$T_p = 2\sqrt{\pi}\,\sigma_t$$

Frequency Domain

Energy Fluctuation

$$\sigma_W^2 = \int dt_1 dt_2 \left[\left\langle \left| E(t_1) \right|^2 \left| E(t_2) \right|^2 \right\rangle - \left\langle \left| E(t_1) \right|^2 \right\rangle \left\langle \left| E(t_2) \right|^2 \right\rangle \right] \right]$$

For Gaussian Process with Zero Mean (SASE Before Saturation)

$$\left|\left\langle E(t_1)E^*(t_2)\right\rangle\right|^2 = \left\langle \left|E(t_1)\right|^2 \left|E(t_2)\right|^2 \right\rangle - \left\langle \left|E(t_1)\right|^2 \right\rangle \left\langle \left|E(t_2)\right|^2 \right\rangle$$

$$\frac{1}{M} = \frac{\int dt_1 dt_2 \left| \left\langle E(t_1) E^*(t_2) \right\rangle \right|^2}{W^2} = \frac{\sigma_W^2}{W^2}$$

Simplified Model of SASE Pulse

Gaussian Electron Bunch

$$w_b(t_j) = \frac{1}{\sqrt{2\pi} \sigma_b} \exp\left(-t_j^2 / 2\sigma_b^2\right)$$

SASE Field Amplitude

$$A(t) \cong A_0 \sum_{j=1}^{N_e} \exp\left[i \,\omega_r \, t_j - \frac{\left(t - t_j\right)^2}{4\sigma^2} \left(1 + \frac{i}{\sqrt{3}}\right)\right]$$

22

 $\omega_r \sigma_b >> 1$ and $\omega_r \sigma >> 1 \ge \langle A(t) \rangle \approx 0$

Model Wigner Function

 $\sigma_t^2 = \sigma_b^2 + \sigma^2$ $\sigma_{\omega}^2 = \frac{1}{3\sigma^2}$ $\sigma_{\omega 0}^2 = \sigma_{\omega}^2 - \frac{1}{12\sigma_t^2}$

 $\mu = \frac{1}{2\sqrt{3}\sigma_t^2}$

Model Statistical Properties

Frequency Chirped SASE

Energy chirped electron beam $\frac{\gamma_j - \gamma_0}{\gamma_0} = \alpha \frac{t_j}{T_b}$ Leads to frequency chirped SASE

$$\omega_j = \omega_0 + ut_j$$
 $u = 2\alpha\omega_0 / T_b$

C. Schroeder et al (2002)

BROOKHAVEN SCIENCE ASSOCIATES

25

Wigner Function for Frequency Chirped SASE

$$W(z;t,\omega) \propto e^{2\rho\sqrt{3} k_{w}z} \exp\left(-\frac{1}{2\sigma_{\omega}^{2}}\left[\omega - \omega_{0} - u\left(t - \frac{1}{2}\left(\frac{z}{v_{0}} + \frac{z}{c}\right)\right)\right]^{2}\right)$$

$$M = \frac{\sigma_{\omega}T_{b}}{\sqrt{\pi}}$$

$$T_{coh} = \frac{T_{b}}{M} = \frac{\sqrt{\pi}}{\sigma_{\omega}}$$

$$\Omega_{coh} = \frac{|u|T_{b}}{M} = \frac{\sqrt{\pi}}{\sigma_{\omega}/|u|}$$

26

Pulse Slicing Using Monochromator

27

BROOKH/

NATIONAL LABORATORY

Region Near Pulse Length Minimum

Optimum

28

Region Near Pulse Length Minimum: $\sigma_t \approx \sigma_{\omega} / |u|$

	Unchirped	Chirped	Filtered
Μ	$\sigma_\omega T_b / \sqrt{\pi}$	$\sigma_{\omega}T_{b}/\sqrt{\pi}$	$2\sigma_m\sigma_t$
T _p	T_b	T_b	$2\sqrt{\pi}\sigma_t$
T _{coh}	$\sqrt{\pi}$ / σ_{ω}	$\sqrt{\pi}$ / σ_{ω}	$\sqrt{\pi}/\sigma_{_m}$
Ω _p	$2\sqrt{\pi}\sigma_{\omega}$	$ u T_b$	$2\sqrt{\pi}\sigma_m$
$\Omega_{\rm coh}$	$2\pi/T_b$	$\sqrt{\pi} u /\sigma_{\omega}$	$\sqrt{\pi} u /\sigma_{\omega}$
ERGY	,	29	BROOKHAV NATIONAL LABORA BROOKHAVEN SCIENCE ASSOC

J.S. DE

Spectrum of HGHG at SDL/BNL and unsaturated SASE at 266 nm under the same electron beam condition

