RF-Based Detector for Measuring Fiber Length Changes with Sub-5 Femtosecond Long-Term Stability.

J. Zemella¹, V. Arsov¹, M. K. Bock¹, M. Felber¹, P. Gessler¹, K. Gürel³, K. Hacker¹, F. Löhl¹, F. Ludwig¹, H. Schlarb¹, S. Schulz², A. Winter¹, L. Wissmann²

> ¹Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

²Institute for Experimental Physics, Hamburg University, Germany

³Department of Physics, Bilkent University, Ankara, Turkey

FEL 2009, Liverpool, United Kingdom

イロト 不得下 イヨト イヨト

Laser-Based Synchronization System at FLASH.

• Goal: Synchronization system with a long-term stability of ${\rm sub-}10\,{\rm fs}$

- Modelocked Erbium-doped Master Laser Oscillator with 216 MHz repetition rate
- Distribution of the laser pulses to 14 endstations using optical fiber links
- Link stabilization with optical cross correlator (OCC)
- Endstations like beam arrival-time monitor (BAM), two-color OCC or local RF generation (Sagnac loop)

イロト イヨト イヨト イヨト

Motivation for RF-Based Detector.

Optical Cross Correlator and Conventional RF-Phase Detector

Optical Cross Correlator:

- Necessary: Exact pulse overlap, dispersion compensation, feedback
- \Rightarrow Rather complex, cost intensive but allows fs or < fs resolution.

Femtosecond timing not required for most endstations

Conventional RF-phase detector:

- Limitations: AM to PM, offset drifts of the mixer, thermal phase drifts of the photo detection process and the filter
- \Rightarrow Long-term drift $\sim 50-100\,{\rm fs}$

Alternative solution:

- Amplitude measurement of high harmonics of the interference pattern of two superimposed pulse trains.
- \Rightarrow Less complex, less expensive system

イロト イポト イヨト イヨト

- Laser pulse train leads to a frequency comb
- Frequency lines are spaced by $f_0 = 1/T_0$
- The superposition of two laser pulse trains $(I_1 = I_2)$ leads to:
 - ⇒ Modulated frequency comb
 - \Rightarrow Modulation of the n^{th} -harmonic: $I(nf_0) \propto \cos^2(\pi n f_0 \Delta t)$
 - \Rightarrow Intensities of the harmonics depend on the temporal offset Δt

• • • • • • • • • • • • •

- · Laser pulse train leads to a frequency comb
- Frequency lines are spaced by $f_0 = 1/T_0$
- The superposition of two laser pulse trains $(I_1 = I_2)$ leads to:
 - ⇒ Modulated frequency comb
 - \Rightarrow Modulation of the n^{th} -harmonic: $I(nf_0) \propto \cos^2(\pi n f_0 \Delta t)$
 - \Rightarrow Intensities of the harmonics depend on the temporal offset Δt

• • • • • • • • • • • •

- · Laser pulse train leads to a frequency comb
- Frequency lines are spaced by $f_0 = 1/T_0$
- The superposition of two laser pulse trains $(I_1 = I_2)$ leads to:
 - ⇒ Modulated frequency comb
 - \Rightarrow Modulation of the n^{th} -harmonic: $I(nf_0) \propto \cos^2(\pi n f_0 \Delta t)$
 - \Rightarrow Intensities of the harmonics depend on the temporal offset Δt

• • • • • • • • • • • • •

- Laser pulse train leads to a frequency comb
- Frequency lines are spaced by $f_0 = 1/T_0$
- The superposition of two laser pulse trains $(I_1 = I_2)$ leads to:
 - ⇒ Modulated frequency comb
 - \Rightarrow Modulation of the n^{th} -harmonic: $I(nf_0) \propto \cos^2(\pi n f_0 \Delta t)$
 - \Rightarrow Intensities of the harmonics depend on the temporal offset Δt

• • • • • • • • • • • • •

- With the observation of one harmonic a change of the temporal offset is possible
- Change of the observed harmonic *n*-times larger for the *n*th-harmonic
- Observing two harmonics seperated by a minimum resp. maximum of the modulation eliminates amplitude dependence

- With the observation of one harmonic a change of the temporal offset is possible
- Change of the observed harmonic *n*-times larger for the *n*th-harmonic
- Observing two harmonics seperated by a minimum resp. maximum of the modulation eliminates amplitude dependence

- With the observation of one harmonic a change of the temporal offset is possible
- Change of the observed harmonic *n*-times larger for the *n*th-harmonic
- Observing two harmonics seperated by a minimum resp. maximum of the modulation eliminates amplitude dependence

- With the observation of one harmonic a change of the temporal offset is possible
- Change of the observed harmonic *n*-times larger for the *n*th-harmonic
- Observing two harmonics seperated by a minimum resp. maximum of the modulation eliminates amplitude dependence

- With the observation of one harmonic a change of the temporal offset is possible
- Change of the observed harmonic *n*-times larger for the *n*th-harmonic
- Observing two harmonics seperated by a minimum resp. maximum of the modulation eliminates amplitude dependence

Setup

Optical Part.

Schematics of the Superpostion of the both Pulse Trains

Setup

Optical Part.

Schematics of the Superpostion of the both Pulse Trains

RF-Part.

Balanced Detection Scheme.

- Photodiode with 10 GHz bandwidth
- Power-detector: Zero Bias Schottky Detector
- ADC with 1 MHz sampling rate and a bandwidth of 40 MHz

J. Zemella (DESY Hamburg

イロト イポト イヨト イヨ

Results

Calibration.

The Voltage Change of the Detector Channels.

 2^{nd} -order polynomial is fitted to the data to calculate the voltage into time

$$\frac{dV}{dt} \approx 10 - 15 \, \frac{mV}{ps}$$

Blue:	Inloop detector
	$44 f_0 = 9.53 \mathrm{GHz}$
Red:	Inloop detector
	$45 f_0 = 9.75 \mathrm{GHz}$

 $\begin{array}{ll} \mbox{Green:} & \mbox{Outloop detector} \\ & 44\,f_0 = 9.53\,\mbox{GHz} \\ \mbox{Black:} & \mbox{Outloop detector} \\ & 45\,f_0 = 9.75\,\mbox{GHz} \end{array}$

・ロト ・回ト ・ヨト ・

50 h Long-term Measurement.

Balanced Time Change of the Inloop and Outloop Detector

 $t_{1,2} = \frac{1}{2} \left(t_{9.53 \,\text{GHz}} + t_{9.75 \,\text{GHz}} \right)$ 400 200 balanced time (fs) 0 -200 -400 -600 -800 10 0 20 30 40 50 time (h)

Red:Inloop detector $t_{pp} = 1.24 \text{ ps}$ Black:Outloop detector $t_{pp} = 0.61 \text{ ps}$

Inloop detector measures fiber length changes twice

Measurement bandwidth: 500 Hz

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

50 h Long-term Measurement.

Time Difference of the Inloop and Outloop Detector

 $\Delta t = \frac{1}{2}t_1 - t_2$ 30 time difference of the detectors (fs) 20 10 0 10 -20 -30 0 10 20 30 40 50 time (h)

Peak-to-peak of the time difference: $t_{pp} = 20 \text{ fs}$

Standard deviation of the time difference over 50 h:

 $\Delta t = 4.6 \, \mathrm{fs}$

Resolution of one detector: Blue: $t_{Res} = 3.2 \text{ fs}$

Measurement bandwidth: Blue 500 Hz Red 10 mHz

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Application of the Detector

Length Change Measurement of PSOF Link

Temperture change for the fiber $\Delta T = \pm 3^{\circ} \text{ C}$

 $t_{pp}=55~{
m fs}~{
m @}~\pm3^\circ\,C,~{
m link}$ length $\sim20~{
m m}$ $T_k=0.4~{
m fs/m~K}$

$$\Delta t = 3$$
 fs (RMS)
 $t_{Res} = 2.1$ fs (RMS)

Conclusion and Outlook.

- New detection principle based on interference pattern of two superimposed pulse trains.
- Drift-free because of the use of only one photodiode and an amplitude measurement instead of a phase measurement.
- Long-term resolution over 50 h of 3.2 fs could be achieved.

- Try to use the scheme for longer fiber links.
- Comparison with the optical cross correlator.
- Install a stabilized link to connect the photo injector laser at FLASH to the synchronization system.

(日) (同) (日) (日)

Acknowledgements.

On behalf of the FLASH-LbSyn-Team and involved DESY-Groups

Thank you for your attention!

イロト イヨト イヨト イヨ