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Abstract 

Periodical Bragg structures may be considered as an 
effective way of controlling the electromagnetic energy 
fluxes and provision of spatially coherent radiation in the 
free electron lasers with oversized interaction space. A 
new scheme of terahertz band FEL with advanced Bragg 
resonator exploiting the coupling between the two 
counter-propagating modes and the quasi-cutoff is 
considered. Advanced Bragg resonator provides effective 
mode selection over the transverse index and may be used 
for realizing a powerful long pulse FEL at terahertz 
frequency band.  

INTRODUCTION  
Reflectors based on Bragg coupling of counter 

propagating waves on the periodic structures are widely 
used both in quantum [1, 2] and classical [3,4] 
electronics. In the millimeter wavelength range, Bragg 
structures based on hollow metallic waveguides with 
periodic corrugation of inner surface allow one to 
combine the effective electron beam transportation with 
selective resonance system. However, the advance in 
shorter wave bands is limited because at large values of 
the oversize factor the coupling between numerous pairs 
of propagating modes occurs. As a result, the radiation 

generated by the electron beam would represent an 
uncontrolled mixture of the waveguide modes.  

As a solution, we have suggested in [5] to use an 
advanced Bragg structure (ABS). Unlike the traditional 
variants of Bragg structures  in ABS coupling between 
propagating and  cut-off waves takes place. As a result 
such a resonator provides effective mode control over 
both longitudinal and transverse coordinates. In [6] a new 
scheme of terahertz band FEL with hybrid planar 
resonator is considered consisting of advanced input 
Bragg mirror and traditional output Bragg mirror.  
Advanced Bragg mirror exploiting the coupling between 
the two counter-propagating modes and the quasi cutoff 
one provides mode selection over the transverse index. 
Main amplification of the wave by the electron beam 
takes place in the regular section of the resonator. Small 
reflections from the output traditional Bragg mirror are 
sufficient for oscillator self-excitation.   

Unlike the case considered in [6], in the present paper 
we study a single section model (see Fig. 1). But 
important factor that for propagating waves transverse 
profiles (profiles over axis y directed between plates) are 
not fixed is taken into account. 

  

 
Figure 1: Scheme of a planar FEL with advanced Bragg resonator. 

 

MODEL AND BASIC EQUATIONS 
An advanced Bragg structure is formed by two parallel 

plates with shallow periodic corrugation of the inner 
walls:  
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where 2h dπ= , 1a  and d are the depth and the period 
of the structure correspondingly (this period is two times 
larger than in traditional Bragg reflectors). Under the 
Bragg resonance condition  

h h≈ ,    (2) 

where h is the wavenumber of the propagating wave, 
which is satisfied when the mean distance between plates 
is given by b0 = nd1/2 (where n is integer), the field can 
be presented as a sum of the two quasi-optical beams 
propagating in opposite directions 
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and a cutoff ��n mode:  
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Here 0yr  is the unit vector directed normal to the plates, 

0zr  is the unit vector along the resonator axis (see Fig. 1). 
Further we consider the nonlinear dynamics of 

the planar FEL with advanced Bragg structure. We 
assume that the sheet electron beam interacts with the 
synchronous wave A+  under the resonance condition  

|| ||whv h vω ≈− , 

where 2w wdh π= , and wd  is the undulator period. 
Non-stationary equations for the amplitudes of coupled 

waves can be presented in the form 
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Here ( )c cω ωΔ = −  is the mismatch between cutoff 
frequency 0/c nc bω π=  and the Bragg frequency,  

0

h
b
νσ =  is the Ohmic losses parameter for the cutoff 

mode, ν is the skin depth (Ohmic losses for propagating 
waves A±  are negligibly small), ( )yδ  is the delta 
function, Jω  is the HF electron current. To derive Eqs. 
(5) which describe coupling between the two propagating 
and a cutoff mode we use the concept of the surface 
magnetic current developed in [7, 8]. 

Taking into account boundary conditions for amplitude 
of propagating waves on the metallic plates 
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these waves can be expanded in a Fourier series 
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Each Fourier term in (6) with its own index n may be 
considered as a normal wave of regular planar waveguide. 

As a result Egs. (5) can be transformed to the form 
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Here we used the following normalized variables and 
parameters  
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Hu is the wiggler field amplitude, 
2μ γ −≈  is the 

bunching parameter, || || /v cβ =  is the electron 
translational velocity, γ  is the relativistic mass factor. 

0nδ  is the Kronecker delta. The HF-current harmonics in 

Eq. (7) 
2

( )
0

0 00

2 1
1

i y
n

n

n yJ e cos d
b

π
θ π θ

δ π
− ⎛ ⎞

= ⎜ ⎟
+ ⎝ ⎠

∫  can be found 

from the averaged electron motion equations  
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For propagating waves boundary conditions at 
resonator edges take a form 
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For the cutoff mode we apply the radiation boundary 
conditions at the edges of corrugation [9,10] 
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where L is the normalized length of the resonator L=Chl.  

Electron efficiency is determined by the following 
relations 
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SIMULATION RESULTS 
Results of the simulation are presented in Fig. 2 and 3. 

for normalized parameters 2.5b =
)

, 5L = , 0.3α =) . In 
Fig. 2a one can see the process of establishment of 
steady-state single frequency oscillation regime. 
Amplitude of modes in steady state regime is shown in 
Fig. 2b. Alongside with the fundamental ТЕМ mode 
several TEn   

(a) 

 

(b) 

 

Figure 2: (a) Temporal dependence of normalized 
amplitude harmonics (TEM - solid black line, TE1 - 
dashed black line and TE2 - solid grey line) and 
(b) amplitude of  harmonics in steady-state regime at 

5L = , 2.5b =
)

, 0.3α =) , s, 0.01σ =) . 

modes are also excited by electron beams. Phases of these 
mode are correlated and profiles of partial wave beams 

( ),A Z Y±

)
 profiles shown in Fig. 3a and 3b don’t vary in 

time. It should be noted that due to electron beam the 
distribution of propagating waves over transverse Y  
coordinate becomes more homogeneous than the structure 
of the cold mode. In the absence of electron beam the 
amplitude of these waves fall down from corrugated plate 
(in our simulation this plate is located at 0Y = ). 

Let us now consider an example of a physical system 
corresponding normalized parameters above. We consider 
a FEL generating a radiation frequency 1 THz using a 
5 MeV electron beam and an undulator period of 6 cm. 

 

Figure 3: Spatial distribution of partial waves (a) A+ , 
(b) A−  and (c) longitudinal profile of partial wave B  in 
the steady-state regime. 

(a)

(b)

(c)
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Taking a sheet beam current density 10 A/cm, a gap 
0 10 mmb =  between the plates and an undulator field 

amplitude Hu=5 kOe one can obtain for the gain 
parameter 41.4 10C −≈ ⋅ . Normalized parameters 2.5b =

)
, 

5L = , 0.3α =)  would then correspond to an interaction 
length 170 cml =  and a corrugation depth 1 5 ma μ= . For 
the simulation presented in Fig. 2 we find a normalized 
efficiency 1.5η =) , which corresponds to an electron 
efficiency of 1%. Taking into account the Ohmic losses 
the output power is 0.5 MW/cm. 

Note that for the effective single frequency operation it 
is sufficient to provide a condition that the frequency 
distance between cut off modes with different transverse 
indices q exceeds the FEL amplification band  

0/ /c b Nπ ω< ,    (12) 
which is defined by the number of wiggler periods N=l/dw 

dw inside the interaction length l. Taking into account that 
the FEL operation wavelength 2 / 2wdλ γ −≈  we get a 
restriction for the width of the gap between resonator 
plates  

2
0 / 2b l γ −< ,    (13) 

Obviously, this condition can be satisfied in terahertz 
wave band. 
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