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Abstract

FEL-based coherent electron cooling (CEC) offers a new
avenue to achieve high luminosities in high energy collid-
ers such as RHIC, LHC, and eRHIC. Traditional treatments
consider the FEL as an amplifier of optical waves with spe-
cific initial conditions, focusing on the resulting field. CEC
requires knowledge of the phase space distribution of the
electron beam in the FEL. We present 1D analytical results
for the phase space distribution of an electron beam with
an arbitrary initial current profile.

INTRODUCTION

Coherent electron cooling (CEC) ([1] and references
therein) is a new proposed method of cooling hadron beams
in high energy storage rings. In contrast with electron cool-
ing which becomes weaker with increasing energy, and
stochastic cooling which is restricted by the bandwidth of
the system, the cooling decrement for coherent electron
cooling does not directly dependent on the hadron beam
energy. This makes CEC ideal for implementation in next
generation high energy hadron colliders, offering boosts in
luminosity in colliders such as the LHC and Tevatron, and
future electron-hadron colliders such as eRHIC, ELIC, and
LHeC.

Figure 1: Schematic of CEC implementation.

CEC is structurally similar to stochastic cooling, and
is schematically depicted in Figure 1. The hadron beam
is combined with an electron beam with identical center
of mass velocity, and leaves an imprint of the individual
hadrons as charge perturbations in the electron beam. That
beam is then passed through an FEL which amplifies the
initial signal and modulates it into a wave packet. In the
kicker section, the hadrons are recombined with the elec-
tron beam after passing through a chicane to create energy-
dependent positioning. In this section, hadrons with too
much or too little energy receive an energy-dependent kick,
reducing the overall energy spread.
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Table 1: Proposed Parameters of a Proof-of-principle ERL
and for eRHIC

PoP eRHIC
Energy ℰ0 22 MeV 136.2 MeV

Gain Length Γ 0.486 m 2 m
Electron density 𝑛0 1× 1018 m−3 2.08× 1018 m−3

Pierce parameter 𝜌 0.0097 .004
Space Charge Λ̂2

𝑝 0.155 .0097

To implement this scheme, a detailed understanding of
the phase space evolution of the initial phase space pertur-
bation created by the hadron beam must be developed. In
the case of the proof-of-principle system, with 𝛾 ∼ 45,
space charge effects will be important. We present initial
results for the perturbation’s evolution through a high-gain
FEL using a 1D theory that accounts for space charge, as
well as a correction to the self-consistent FEL equations of
motion to first order in the Pierce parameter.

THEORETICAL RESULTS

A focus on the evolution of the phase space distribution
of an electron bunch in a high-gain FEL to obtain the equa-
tions of motion for the output laser field [2]. This treatment
develops the couples Maxwell-Vlasov equations, and com-
bines them into a single current equation. Beginning with
an approximate one-dimensional hamiltonian,
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where �⃗�𝑤 is the vector potential on axis for a helical wig-
gler, �⃗�⊥ is the laser field, 𝐴𝑧 is the longitudinal space
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where ℋ = ℰ0 − ℰ , 𝛾−2
𝑧 = (1 + 𝐾2)𝛾−2

0 and 𝐾2 =
(𝑒𝐴𝑤/𝑚𝑐2)2. Introducing the general Fourier transform
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the slow-varying Maxwell equation and space charge is
solved as
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By direct substitution into the Vlasov equation, this gives
the Fourier transformed linearized Maxwell-Vlasov equa-
tion. Integrating over energy to obtain an equation for the
current, we obtain
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The solution of this equation is carried out by use of

Laplace transform techniques, keeping terms to first order
in 𝜌. The Laplace transform yields an equation with the
numerator having as source terms an initial energy modu-
lation and an initial laser field. For applications to CEC,
the initial laser field term 𝒰 (0)

⊥ is set to zero, and we study
the amplification of the initial charge density perturbations.
Dropping the laser field term, the Fourier transformed so-
lution is given by Equation 7

Assuming that any energy distribution in the initial mod-
ulation leads to an exponential damping term, the evolution
is determined by the roots in terms of 𝑠 of the equation
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The small correction due to 𝜌 is included, and results in a
small correction to the growth exponents and phase evo-
lution. For CEC, the phase information is an important
quantity, and inclusion of some small correction may prove
useful in future work.

As a particular case, we look at the situation of a cold
background beam, i.e. 𝐹 (𝑃 ) = 𝛿(𝑃 ). In this case, the
denominator becomes a cubic equation given by
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Figure 2: The real component of the roots for a cold beam.
For the strong space charge effects present in the proof of
principle, there is no growth for short wavelengths.
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Figure 3: The imaginary component of the roots for a cold
beam. The space charge effects have little effect on the
phase compared to the zero space charge case.

The inclusion of the 𝜌 parameter to first order offers small
corrections to existing results in [2]. For particular appli-
cation, we consider the eRHIC parameters given in Table
1.

The resulting roots are depicted in Figures 2 and 3. Com-
pared to standard results, the space charge effects strongly
reduces amplification at shorter wavelengths. The space
charge effects have a minimal effect upon the phase evo-
lution, but suppresses the peak growth, and narrows the
bandwidth of growth substantially. This narrow bandwidth
poses some potential troubles for the proof-of-principle,
but will not be present at the operating energies for eRHIC.

APPLICATIONS TO ERHIC
eRHIC is a proposed upgrade that would allow colli-

sions of spin-polarized electrons with hadrons, with, for ex-
ample, 325 GeV protons and 20 GeV spin-polarized elec-
trons [4]. Due to technical restrictions in spin-polarized
electron current, the application of CEC to reduce hadron
beam emittance is critical to reach the desired luminosi-
ties for the eRHIC upgrade. The appeals of CEC are the
weak dependence of cooling time on energy, compared to
traditional electron cooling, and its large bandwidth com-
pared to stochastic cooling. To achieve this cooling us-
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ing traditional electron cooling methods would take over
30 hours at eRHIC, whereas using CEC will take approx-
imately six minutes for longitudinal cooling, and approxi-
mately twenty minutes for both longitudinal and transverse
cooling [3].

This work begins the steps outlined in [5], providing a
Green’s function for the current growth given an initial sig-
nal. Accounting for energy spread, which for the full eR-
HIC upgrade is estimated at around 3 × 10−3, and around
5× 10−3 for the proof of principle ERL design [5], as well
as the space charge effects in great detail, are necessary for
working implementation of coherent electron cooling.

FUTURE WORK

Further investigations these results to CEC will require
calculation for a thermal beam, the explicit solution for a
particular initial condition 𝑓1(𝑧 = 0, 𝜈, 𝑃 ), and the nu-
merical generalization of results to include the full three-
dimensional case. The final objective of this work is to
calculate the cooling decrement of the FEL output signal
on the hadron beam in the kicker of the CEC.

The first two requirements are coupled, as the input sig-
nal from the hadron beam is analytically related to the ther-
mal distribution of the electron beam. Analytical results for
the density perturbation generated by a charged hadron in
an electron beam with Lorentzian and 𝜅 = 2 distributions,
i.e.

𝑓0(𝑃 ) ∝ 1(
1 + (𝑃/𝑃0)2

)𝜅

have been obtained [6], and these results are currently be-
ing generalized to obtain the phase space distribution. The
current distribution is already known (see figure 4) for a va-
riety of distributions, and generalization to obtain the phase
space distribution is under way [7]. These results are three-
dimensional, and will require some suitable reduction to
the one-dimensional picture of the results obtained for the
FEL model presented here. Having a Green’s function for
a thermal distribution and resulting imprinted signal is the
next step in the 1D theory, and would allow direct analyti-
cal solution in frequency space for the wave packet output
of the current. Three-dimensional numerical simulations
for a given input is the last phase for simulations of the FEL
output, and can be benchmarked against the 1D results.

Direct calculation of the cooling decrement and effects
of the kicker on the energy spread of the hadron beam input
is the ultimate goal of these calculations. Current calcula-
tions using simple models for the output signal indicate a
cooling decrement weakly dependent on energy, but more
precise calculations are desirable.

Figure 4: Taken from [6], the real space charge perturbation
for a single hadron in a Lorentzian electron background.
Lengths are scaled to the Debye length.
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