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Abstract

If the energy spread of a beam is larger then the Pierce
parameter, the FEL gain length increases dramatically and
the FEL output gets suppressed. We show that if the en-
ergy distribution of such a beam is made oscillatory on a
small scale, the gain length can be considerably decreased.
Such an oscillatory energy distribution is generated by first
modulating the beam energy with a laser via the mecha-
nism of inverse FEL, and then sending it through a strong
chicane. We show that this approach also works for the op-
tical klystron enhancement scheme. Our analytical results
are corroborated by numerical simulations.

INTRODUCTION

If the energy spread of a beam is larger then the Pierce
parameter, the FEL gain length rapidly increases with the
rms energy spread. This can be easily illustrated with a 1D
model [1]

𝜇− 𝜈 −
∫
𝑑𝜂
𝑑𝑉 (𝜂)/𝑑𝜂

𝜂 − 𝜇 = 0, (1)

where 𝑉 (𝜂) is the distribution function of the beam over
the energy normalized by unity,

∫
𝑉 (𝜂)𝑑𝜂 = 1, 𝜂 is the di-

mensionless energy deviation relative to the nominal one,
𝜂 = (𝛾 − 𝛾0)/𝜌𝛾0, 𝛾 is the Lorentz factor, 𝛾0 is the nomi-
nal beam energy in units of𝑚𝑐2, 𝜌 is the Pierce parameter,
𝑘𝑢 = 2𝜋/𝜆𝑢 with 𝜆𝑢 the undulator period, and 𝜈 is the rel-
ative frequency detuning. The parameter 𝜇 is the complex
growth rate of the radiation field in the undulator measured
in units 2𝜌𝑘𝑢.

For a Gaussian distribution function

𝑓 = (
√
2𝜋𝜎𝜂)

−1𝑒−𝜂2/2𝜎2
𝜂 , (2)

where 𝜎𝜂 is the rms energy spread of the beam in dimen-
sionless energy units. It is easy to find that in the limit
𝜎𝜂 → 0 (that is for 𝑓 = 𝛿(𝜂)) the optimal detuning is
𝜈 = 0 and 𝜇 ≈ 𝜇0 = (−1 + 𝑖

√
3)/2 = −0.5 + 0.87𝑖. For

𝜎𝜂 = 1 and an optimized detuning, Im𝜇 = 0.44. In the
limit of large 𝜎𝜂 , the growth rate Im𝜇 becomes small, and
the imaginary part of the integral in (1) is approximately
given by the residue of the integral taken at 𝜂 = Re𝜇,

Im𝜇 = 𝜋 𝑑𝑓
𝑑𝜂

∣∣∣
𝜂=Re 𝜇

. Noting that the real part of 𝜇 can be

varied by changing detuning 𝜈 in (1) we conclude that the
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maximum value of Im𝜇 is given by [2]

max Im𝜇 = 𝜋max

∣∣∣∣ 𝑑𝑓𝑑𝜂
∣∣∣∣ = 0.61

√
𝜋

2

1

𝜎2𝜂
. (3)

As numerical calculations show, this asymptotic depen-
dence of max Im𝜇 gives a good approximation to the exact
value when 𝜎𝜂 ≳ 2.

In this paper we show that even when the energy spread
of the beam is large, the gain length for the FEL instabil-
ity can be considerably decreased if the energy distribution
function is made oscillatory over energy. As we show in
the next section, this kind of energy distribution function
can be created using a laser beam with a tuned undulator,
and a strong chicane.

GENERATING OSCILLATORY
DISTRIBUTION FUNCTION

A system that creates an oscillatory energy distribution
function is shown in Fig. 1: it consists of an undulator and a
laser beam, which are synchronized with the electron beam

beam

laser, ω

dispersive section, R56

Figure 1: An undulator followed by a chicane. The beam
energy is modulated in the undulator due to interaction with
a laser beam.

in such a way that the electron beam energy becomes mod-
ulated over energy after the passage through the modula-
tor. Typically, the bunch length is much larger than the
laser wavelength 𝜆𝐿, and one can locally consider a longi-
tudinally uniform beam, neglecting variation of the beam
current over the distance of several laser wavelength. The
undulator is followed by a chicane whose strength is char-
acterized by the parameter𝑅56.

Assuming a Gaussian distribution function (2) before the
undulator, the distribution function after the chicane is (see,
e.g., [3])

𝑓(𝜁, 𝜂) =
1√
2𝜋𝜎𝜂

𝑒
− 1

2𝜎2
𝜂
(𝜂−𝐴 sin(𝜁−𝐵𝜂))2

, (4)

where 𝐴 = Δ𝛾/𝜌𝛾0, 𝐵 = 𝑅56𝑞𝜌, 𝜁 = 𝑞𝑧, Δ𝛾 is
the amplitude of the energy modulation in units 𝑚𝑐2, and
𝑞 = 2𝜋/𝜆𝐿 is the wave number of the laser. Note that
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normalization of energy and the strength of the chicane in-
volves the Pierce parameter 𝜌.

We consider an example of a large initial energy spread
𝜎𝜂 = 4 and modulate the beam with 𝐴 = 4. After passing
through the chicane, the energy distribution function of the
beam becomes oscillatory as shown in Fig. 2 for the case
𝐵 = 2. Note that the distribution function depends on
the longitudinal coordinate 𝜁 in the beam being a periodic
function of 𝑧 with the period 𝜆𝐿. In Fig. 2 we show two
plots corresponding to locations 𝜁 = 0 and 𝜁 = 0.5𝜆𝐿.
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Figure 2: Distribution functions of the beam after the chi-
cane at 𝑧 = 0.5𝜆𝐿 (blue solid line) and 𝑧 = 0 (red line) for
𝐵 = 2. For comparison, the dashed line shows the original
Gaussian with 𝜎𝜂 = 4.

The number of oscillations in energy is proportional to
the dimensionless strength of the chicane 𝐵, and the width
of the fine structure on the energy distribution is inversely
proportional to 𝐵. Note also that modulation of the beam
energy increases the rms energy spread in the beam from

𝜎𝜂 to
√
𝜎2𝜂 + 𝐴

2/2. In the above example this means that

the energy spread of the beam is increased from the initial
𝜎𝜂 = 4 to the rms value 4.9.

GAIN LENGTH FOR OSCILLATORY
BEAM DISTRIBUTION

Using Eq. (1) we numerically calculated the parameter
Im𝜇 for the distribution functions corresponding to the chi-
cane strengths 𝐵 = 1, 2, and 4.5. The results of such cal-
culations for the case 𝐵 = 2 are shown in Fig. 3.

For a smooth gaussian distribution function, as it fol-
lows from Eq. (3) for 𝜎𝜂 = 4, the inverse growth length
is Im𝜇 = 0.047. One can see from Fig. 3 that the maxi-
mum value of Im𝜇 increases (from ≈ 0.05) to 0.22, more
than 4 times. Calculations carried out for 𝐵 = 1 and 4.5
give the maximum values of Im𝜇 equal to 0.17, and 0.25,
respectively.

It is important to emphasize that, as seen from Fig. 3,
the position of the maximum growth rate varies with the
coordinate 𝑧 in the beam (it is a periodic function of 𝑧 with
the period 𝜆𝐿). Due to the slippage of radiation relative
to the beam, if the slippage length is not small compared
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Figure 3: Plot of Im𝜇 versus detuning 𝜈 for 𝑧 = 0 (blue
solid line) and 𝑧 = 0.5𝜆𝐿, for 𝐵 = 2.

with 𝜆𝐿, this can lead to a detuning of the radiation field
in the process of its exponential growth. The effect of the
slippage can be estimated in the following way. One can
see from Fig. 3 that, for a given detuning 𝜈, a shift in 𝑧
by half a laser wavelength changes the growth rate from its
maximum to almost zero. If this shift happens on the gain
length𝐿𝑔, it will strongly suppress the FEL process. Hence
the condition, when the slippage can be neglected is

𝜆𝑟
𝐿𝑔

𝜆𝑢
≪ 1

2
𝜆𝐿 , (5)

where 𝜆𝑟 is the wavelength of the radiation, and on the left
we have an estimate of the slippage on the gain length.

To compare with our analytical theory, we perform 1D
FEL simulations using the following parameters: electron
energy is 1.2 GeV, peak current is 2 kA, the normalized
emittance is 1 𝜇m, undulator period is 3 cm and the beta
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Figure 4: Results of 1D simulations. FEL power as a func-
tion of distance 𝑧 from the entrance to the undulator for
two cases: a Gaussian beam with an initial energy spread
of 𝜎𝜂 = 2 (blue line) and the same beam after passing
through the system shown in Fig. 1 with 𝐴 = 3 and 𝐵 = 3
(red line).

function in the undulator is 4 m. We choose the energy
modulator laser wavelength to be 2.4 𝜇m, and the final ra-
diation wavelength to be about 5 nm. With these parame-
ters, we have 𝜌 = 2.2× 10−3 and choose the beam energy
spread 𝜎𝜂 = 2𝜌 = 4.4× 10−3 for the simulation. We also
use 𝐴 = 3 and 𝐵 = 3 for the modulated case. As shown
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in Fig. 4, the beam with the oscillatory energy distribution
has a gain length of about 3 m, while the beam with the
Gaussian distribution has a gain length of about 5 m. Note
that the above 1D theory predicts about a factor of 2 en-
hancement in gain length using these parameters. The gain
enhancement effect is slightly reduced in these simulations
presumably due to slippage effect not taken into account in
the theory.

3D COMPUTER SIMULATIONS

We used the three dimensional (3D) FEL simulation
code Genesis 1.3 [4] to check the gain enhancement effect
for a beam with an oscillatory energy distribution. The pa-
rameters of the beam and the undulators were chosen close
to the LCLS soft x-ray (1.5 nm) parameters, with undulator
period 3 cm, K = 3.5, electron energy 4.3 GeV, and an nor-
malized emittance of 0.4 𝜇m. With these parameters, we
have 𝜌 = 1.6× 10−3. With an initial energy spread 𝜎𝜂 = 1
(corresponding to the rms energy spread of 6.9 MeV with
real parameters), Genesis simulations give a gain length of
about 3.4 m (see Fig. 5).

To generate an oscillatory energy distribution of the elec-
trons, we choose a 4 𝜇m wavelength laser to interact with
the electron beam in the modulator. This laser wavelength
satisfies the condition in Eq. (5). The amplitude of the en-
ergy modulation is equal to 𝐴 = 3. The chicane is set
at 𝐵 = 3. After passing through the chicane, the energy
distribution of the electron beam becomes oscillatory with
the rms energy spread increased to 𝜎𝜂 = 2.34 (correspond-
ing to 16.1 MeV). This oscillatory-distribution beam is then
read into Genesis for FEL simulations. The results of the
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Figure 5: FEL power as a function of distance 𝑧 from the
entrance to the undulator for two cases: a Gaussian beam
with an initial energy spread of 𝜎𝜂 = 1 (blue dashed line)
and the same beam after passing through the system shown
in Fig. 1 with 𝐴 = 3 and 𝐵 = 3 (red solid line).

simulations are shown in Fig. 5: the gain length is equal
to 2.5 m in this case. The gain enhancement is about 1.36
compared with the Gaussian beam. Shown in Fig. 6 is the
longitudinal phase space distribution of the particles at the

−4 −2 0 2 4
4250

4300

4350

θ

E
 (

M
eV

)

z = 0 m

−4 −2 0 2 4
4250

4300

4350

θ

E
 (

M
eV

)

z = 40 m

Figure 6: Particle distribution at the entrance of the undu-
lator and at 𝑧 = 40 m, for the case of the oscillatory distri-
bution function of the beam. The horizontal coordinate 𝜃 is
the longitudinal position normalized by 𝜆𝑟/2𝜋.

entrance of the undulator and right after saturation (𝑧 = 40
m) point for the modulated case.

We also performed Genesis simulation for another case
with two times larger initial energy spread of 𝜎𝜂 = 2 and
the same parameters 𝐴 = 3 and 𝐵 = 3. The results of
that simulation which show the gain enhancement for the
oscillatory case of about 1.6, are shown in Fig. 7.
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Figure 7: FEL power as a function of distance 𝑧 from the
entrance to the undulator for two cases: a Gaussian beam
with an initial energy spread of 𝜎𝜂 = 2 (blue dashed line)
and the same beam after passing through the system shown
in Fig. 1 with 𝐴 = 3 and 𝐵 = 3 (red solid line).

OPTICAL KLYSTRON FEL

As discussed earlier, if the beam energy spread is much
less than the FEL 𝜌 parameter, the high gain FEL process is
not sensitive to the detailed energy distribution. However,
a high-gain optical klystron (OK) can take advantage of a
very small energy spread (much smaller than 𝜌) to speed
up the bunching process [5]. Here we investigate whether
such a scheme can benefit from an oscillatory energy dis-
tribution.
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The 1D theory for a high-gain optical klystron FEL in-
cluding SASE effects can be found in Ref. [6]. Here we
write down the OK enhancement factor to the radiation
field 𝐸𝜈 at the resonant frequency 𝜔 = 𝜔𝑟 and neglect the
phase matching effect:

𝑅 ≡ 𝐸OK

𝐸no OK
=

1− ∫
𝑑𝜂 𝑑𝑉 (𝜂)/(𝑑𝜂)

(𝜇−𝜂)2 𝑒−𝑖𝐷𝜂

1 + 2
∫
𝑑𝜂 𝑉 (𝜂)

(𝜇−𝜂)3

, (6)

where 𝐷 = 𝑅56𝑘𝑟𝜌, and we use the same notation as in
Eq. (1).

Treating ∣𝜂∣ ≪ ∣𝜇0∣ in Eq. (6) and integrating the numer-
ator by part, we have

𝑅 ≈ 1

3

[
1 +

(
2− 𝑖𝐷

𝜇20

)∫
𝑑𝜂𝑉 (𝜂)𝑒−𝑖𝐷𝜂

]
. (7)

The gain enhancement comes mainly from the last term
that is proportional to the dispersion strength𝐷:

𝑅3 = − 𝑖𝐷
3𝜇20

∫
𝑑𝜂𝑉 (𝜂)𝑒−𝑖𝐷𝜂 . (8)

For an oscillatory energy distribution as described in
Eq. (4), the distribution function varies along the longitu-
dinal position 𝑧 as shown in Fig. 2. Assuming the modula-
tion wavelength is much longer than the relevant slippage
length in the FEL undulator, we can choose a representative
𝑧-location for the energy distribution as

𝑉 (𝜂) ≈𝑓
(
𝜁 =

𝜋

2
, 𝜂
)

=
1√
2𝜋𝜎𝜂

exp

[
− (𝜂 −𝐴 cos(𝐵𝜂))2

2𝜎2𝜂

]

≈ 1√
2𝜋𝜎𝜂

exp

(
− 𝜂2

2𝜎2𝜂

)[
1 +

𝜂𝐴

𝜎2𝜂
cos(𝐵𝜂))

]
.

(9)

The last approximation was obtained by considering 𝐴 <
𝜎𝜂 . Putting this energy distribution into Eq. (8), we obtain

𝑅3 = − 𝑖𝐷
3𝜇20

[
𝑒−𝐷2𝜎2

𝜂/2 − 𝑖𝐴
2
(𝐷 +𝐵)𝑒−(𝐷+𝐵)2𝜎2

𝜂/2

− 𝑖𝐴
2
(𝐷 −𝐵)𝑒−(𝐷−𝐵)2𝜎2

𝜂/2
]
. (10)

The first term is the OK gain for a smooth Gaussian energy
distribution (i.e.,𝐴 = 0). Its amplitude is maximized when
𝐷 = ±1/𝜎𝜂. The second and the third terms are maxi-
mized when 𝐷 = ±(1/𝜎𝜂 + 𝐵) for an oscillatory energy
distribution. The ratio of the optimized second/third term
to the optimized first term is

∣∣∣∣∣
𝑅3(𝐴)

𝑅3(𝐴 = 0)

∣∣∣∣∣ =
𝐴

2

(
1

𝜎𝜂
+𝐵

)
≈ 𝐴𝐵

2
(11)

for 𝐴𝐵 ≫ 1. Thus, an oscillatory energy distribution will
improve the OK gain factor compared to a smooth energy
distribution. This is true even when 𝜎𝜂 → 1.

We check our approximate analytical result with 1D FEL
simulations. The simulation is carried out in the SASE
mode at 5 nm radiation wavelength using parameters de-
scribed for Fig. 4, except that we take 𝜎𝜂 = 0.3. We then
modulate the electron beam with 𝐴 = 0.9 at 𝜆𝐿 = 2.4 𝜇m
and pass the beam through a chicane with 𝐵 = 15. After
the chicane, the modulated beam is sent through the FEL
undulator in the optical klystron configuration: after the
beam interacts with the radiation in the first part of the un-
dulator, a chicane is introduced to bunch the beam at 5 nm
before sending into the second part of the undulator. The
bunching gain factor vs the dispersion strength at the be-
ginning of the second undulator is shown in Fig. 8. The
bunching maximizes at 𝐷 ≈ 16, which is in reasonable
agreement with the expected optimal𝐷 = 1/𝜎𝜂+𝐵 = 18.
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Figure 8: Bunching gain factor as a function of dispersion
strength𝐷.

CONCLUSIONS

In this paper we demonstrated that an oscillatory energy
distribution function of an electron beam exhibits a shorter
FEL gain length than a smooth Gaussian distribution. An
oscillatory distribution function can be obtained by means
of a laser beam interacting with the electron beam in an
undulator-modulator followed by a chicane. The proposed
method of shortening of the gain length might be useful, in
particular, for FELs based on electron beams generated in a
laser-plasma wakefield accelerator which are characterized
by relatively large energy spread [7, 8].
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