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Abstract 
We derive the average and rms bunching for Poisson 

statistics.  Unlike a bunch with a fixed number of 
independent particles, the shot noise is independent of 
frequency. 

INTRODUCTION 
For a collimated bunch of ultrarelativistic electrons, the 

radiation field emitted at a given wavelength is 
proportional to the Fourier transform of the electron line 
density—the so-called bunching.  For a bunch with a 
fixed number of independent particles, the mean and rms 
values of the bunching describe coherent radiation from 
the bunch’s density profile in addition to incoherent 
radiation from fluctuations in particle locations [1, 2]. 

We derive the mean and rms values of the bunching for 
a Poisson process, in which the number of particles in a 
bunch varies from bunch to bunch.  Our results agree with 
a previous analysis [3].  Unlike a bunch with a fixed 
number of statistically independent particles, the variance 
and standard deviation of the bunching (i.e., the shot 
noise) is independent of frequency. 

POISSON STATISTICS 
Consider a bunch that obeys Poisson statistics [4], in 

which the total number of particles N varies while the 
mean N  is finite.  Let the number of particles that have 
passed by an observer at time t be described by a 
statistical process N(t) for which process increments are 
independent, i.e., the number of particles observed in non-
overlapping time intervals (t0, t1], (t1, t2], (t2, t3], etc. are 
independent.   

For a Poisson distribution in which the mean number of 
particles is μ, the probability of observing k particles is 

!/ kek μ−μ .  For a bunch with particle line density profile 

v(t), the mean number of particles in the time interval 

],( tss +  is ∫ ′′+ts
s tdtv )( .  Describing such a bunch as a 

nonhomogeneous Poisson process [4], we have 
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Since N(–∞) = 0, the probability that the jth particle is 
observed in the time interval (t, t+dt] is given by the 
distribution 
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For independent process increments, 
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where 
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The mean number of particles in the bunch is 
)(∞=VN , while the probability that the bunch has 

n particles is  
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Noting that  
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we have [5] 
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As expected, the integral of pj(t) over all time gives the 
probability that the entire bunch has  j or more particles. 

The head of a uniform beam is described when v(t)  is 
zero for negative times and constant for t > 0 [6], in which 
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case the Poisson process is homogenous and N  is 
infinite.   

AVERAGE BUNCHING 
For a collimated bunch of ultrarelativistic electrons, the 

radiation emitted at angular frequency ω is proportional to 
the Fourier transform of the line charge density.  For an 
n-particle bunch in which the jth particle is observed at 
time tj, the radiation is therefore proportional to the 
Fourier transform of the particle line density, given by 
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∞
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n
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For a Poisson process, in which the number of particles in 
a bunch varies, the mean value of T(ω) is 

∑∑
=

ω∞

= =
><==>ω<

n

j

ti

n nN
enNT j

11
]Pr[)(            (9) 

where 
nN

ti j =
>ω< )exp(  is the mean value of exp(iωtj) 

for a bunch with n particles.  Changing the order of 
summation gives 
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Here,  
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where ∫
∞
∞−= dttptptf jjj )(/)()(  is the conditional 

probability distribution for the jth particle, given that the 
bunch has j or more particles.  Thus, eq. (10) gives 

∫∑

∑ ∫
∞

∞−

∞

=

−

∞

=

∞

∞−

ω−
−

=

ω>=ω<

1

1

1

)exp()()](exp[
)!1(

)]([

)exp()()(

j

j

j
j

dttitvtV
j

tV

tdtitpT

        (12) 

Since the sum over j gives exp[V(t)], we have 
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where F(ω) is the bunch form factor at angular frequency 
ω, equal to the Fourier transform of the normalized line 
density profile Ntv /)( . 

RMS BUNCHING 
Consider |T(ω)|2, whose value for an n-particle bunch is  
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consider the probability that the jth particle is in the 
interval (t1, t1+dt1]  while the kth particle is in the interval 
(t2, t2+dt2].  For j < k, the nonzero probability for t1 < t2 is 
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 The assumption of independent process increments yields 
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so that, for  j < k 
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where H(t) is the Heaviside function equaling 1 for 
positive t and zero for negative t. 

For  j > k,  p jk (t1, t2)  is given by exchanging  t1 and  t2, 
and exchanging  j and k, on the RHS of eq. (17).   

For the case j = k, 
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where  pj (t) is given by eq. (4). 
In all cases ( j < k, j = k, and  j > k), we have 
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where 
nN

tti kj =
>−ω< )])(exp[  is the average for a bunch 

with n particles.  The contribution to <|T(ω)|2> from the 
terms with j = k is 
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The contribution from the remaining terms is, after 
changing the order of summation 
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where ∫ ∫
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conditional probability distribution, given that the number 
of particles in the bunch is at least max( j, k).  Thus, the 
contribution from terms with j ≠ k is given by 
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Combining the terms for j < k and j > k, we write the 
contribution from terms with j ≠ k as 
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Performing the summations yields 
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Combining eqs. (21) and (26) gives the result 

222 |)(||)(| ω+=>ω< FNNT .                        (27) 

The variance of the bunching is  

NTT =>>ω<−ω< 2|)()(| .                          (28) 

PREVIOUS RESULTS 
For a bunch containing a fixed number n of 

independent particles, with joint probability distribution 

∏ =
=

n

j jn tftttp
121 )(),...,( , the Fourier transform of the 

particle line density has average value 

.)()(

...)...(...)(

1

1 11

∑ ∫

∑ ∫ ∫

=
∞
∞−

ω

=
∞
∞−

∞
∞−

ω

ω==

=>ω<

n
j

ti

n
j n

ti
nn

nFdtetf

dtdtettpT j

    (29) 

 The square of its rms value is well known 
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where F(ω) is the Fourier transform of  f (t) [1, 2].   
For a process in which the number of particles in a 

bunch varies while the particles in an n-particle bunch are 

independent, ∑
∞
= ω==>ω< 1 )(]Pr[)( n nFnNT  and 

∑
∞
= ω−+==>ω< 1

22 ]|)(|)1(][Pr[|)(| n FnnnnNT .  For a 

Poisson distribution of bunch populations, the average of 

N  is N  and the average of )1( −NN  is 2N  [4], so that 

these formulas give eqs. (13) and (27), as noted in Ref. 
[3].   

Thus, these bunching formulas for Poisson statistics 
may be rigorously obtained from previous results by 
showing that randomly chosen particles in an n-particle 
bunch are independent with probability distribution 

Ntv /)( . 

For an n-particle bunch with observation times nttt ..., 21 , 

let nttt ′′′ ..., 21  be the ordered observation times.  There are n! 

bunches with ordered times nttt ′′′ ..., 21 .  The joint 

probability distribution for an n-particle bunch is 
),...,()!/1(),...,( 21..1221 nnn tttfntttp ′′′= , where ),...,( 21..12 nn tttf ′′′  

is the conditional probability distribution given that the 
bunch has n particles.  For a Poisson process, 
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The assumption of independent process increments yields 
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Therefore,  
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which justifies eqs. (13) and (27). 

SUMMARY 
For a collimated bunch of electrons obeying Poisson 

statistics with average bunch population N , we have 
derived the average and rms bunching.  Our results agree 
with Ref. [3]. 

The bunching, given by the Fourier transform of the 
particle line density, has average value 

)()( ω=>ω< FNT .                              (34) 

The mean of its square is 

222 |)(||)(| ω+=>ω< FNNT .                  (35) 

This equals the sum of an incoherent contribution N  and 

a coherent contribution 22 |)(| ωFN .  Here, F(ω) is the 

bunch form factor, equal to the Fourier transform of the 
normalized line density profile.   

The variance of the bunching is independent of 
frequency 

NTT =>>ω<−ω< 2|)()(| ,                          (36) 

and its standard deviation is N . 
In contrast, the variance of the bunching for a fixed 

number n of independent particles depends upon 

the frequency as )|)(|1(|)()(| 22 ω−=>>ω<−ω< FnTT nn .  

Thus, for frequencies where |F(ω)| ≈ 1, the rms shot noise 
of a fixed number n of independent particles is much 
smaller than the frequency-independent shot noise of a 
Poisson process with average bunch population N = n. 
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