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Abstract

We derive the average and rms bunching for Poisson
statistics.  Unlike a bunch with a fixed number of
independent particles, the shot noise is independent of
frequency.

INTRODUCTION

For a collimated bunch of ultrarelativistic electrons, the
radiation field emitted at a given wavelength is
proportional to the Fourier transform of the electron line
density—the so-called bunching. For a bunch with a
fixed number of independent particles, the mean and rms
values of the bunching describe coherent radiation from
the bunch’s density profile in addition to incoherent
radiation from fluctuations in particle locations [1, 2].

We derive the mean and rms values of the bunching for
a Poisson process, in which the number of particles in a
bunch varies from bunch to bunch. Our results agree with
a previous analysis [3]. Unlike a bunch with a fixed
number of statistically independent particles, the variance
and standard deviation of the bunching (i.e., the shot
noise) is independent of frequency.

POISSON STATISTICS

Consider a bunch that obeys Poisson statistics [4], in
which the total number of particles N varies while the
mean N is finite. Let the number of particles that have
passed by an observer at time ¢ be described by a
statistical process N(f) for which process increments are
independent, i.e., the number of particles observed in non-
overlapping time intervals (%, 7], (¢;, t], (2, #3], etc. are
independent.

For a Poisson distribution in which the mean number of
particles is W, the probability of observing k particles is

uke™ /k!. For a bunch with particle line density profile
v(#), the mean number of particles in the time interval
(s,s+1] is [T7v(t")dt’. Describing such a bunch as a

nonhomogeneous Poisson process [4], we have

Pr[N(s+1t)—N(s) =k]

N SN g ey
= (T v(@ydt)* exp(=[SM v(t)dt') 1 k!

Since N(-») = 0, the probability that the jth particle is
observed in the time interval (¢, #+df] is given by the
distribution
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pj(t)dt=Pr[N(t)=j—l, N(t+dt) = j]
=Pr[N@#)—N(—0)= j—1,N(@t+dt)-N(@) >1]

)

For independent process increments,

p;(t)dt = Pr{N(1) = N(-e) = j—1Pt[N(t +dr) — N(t) > 1] 3
=Pr[N(t)— N(—so) = j—1]{l=Pr[N(t + dt) - N(t) = 0]}.

Using  Pr[N(r+d)—-N(t)=0] = exp(—| " v(t)dr)

=exp(—v(t)dt) =1—-v(t)dt , we have

40 i
p] (l)dl = We V(l)dl (4)
where
Vi)y=['_v(thdt . 3)

The mean number of particles in the bunch is
N =V(e), while the probability that the bunch has
n particles is

Pt[N = n] = Pr[N(e) = N(=0) =n] = N"e N /n!  (6)

Noting that

ij(’)df -1 T[V(f)]j_le_v(’)v(t)dt

(D!
- @
=—— v/ e Vav,
(j—Dlo
we have [5]
o _ j-lpn o ATH _
ij(t)dIZI—E_NZN B
. P A —
)]

= iPr[N =n] = Pr[N 2= j]

n=j

As expected, the integral of p,(r) over all time gives the

probability that the entire bunch has j or more particles.
The head of a uniform beam is described when v(¢) is

zero for negative times and constant for ¢ > 0 [6], in which
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case the Poisson process is homogenous and N is
infinite.

AVERAGE BUNCHING

For a collimated bunch of ultrarelativistic electrons, the
radiation emitted at angular frequency  is proportional to
the Fourier transform of the line charge density. For an
n-particle bunch in which the jth particle is observed at
time #, the radiation is therefore proportional to the
Fourier transform of the particle line density, given by

T() =" 3" 8(—1))expliond: = Y"_explior;) [1, 21.

For a Poisson process, in which the number of particles in
a bunch varies, the mean value of T(w) is

<T(@)>= 3PN =n]3 < > N ©9)

n=1 j=1 =n

where < exp(ior ;) >|N is the mean value of exp(int)
=n

for a bunch with n particles.
summation gives

Changing the order of

<T(@)>=3 i Pr[N =nl< e >‘
e 0
= S PN > jl< ™ >‘ .
=1 Nzj
Here,
it < iot
<e 1>‘ = [f;0edr, (11)
N> oo
where  f;(t)=p;(t)/["_ p;()dr is the conditional

probability distribution for the jth particle, given that the
bunch has j or more particles. Thus, eq. (10) gives

<T@)>=Y j p (1) explion)dr

j=l e

12)
J' Z [V( ) exp[ V(6)V(1) exp(ion)dr
—eo j=1
Since the sum over j gives exp[V(¢)], we have
<T(w)>= Tv(t)exp(i(ut)dt = NF(0), (13)

—oo

where F() is the bunch form factor at angular frequency
®, equal to the Fourier transform of the normalized line

density profile v(r)/ N .
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RMS BUNCHING

Consider |T()|’, whose value for an n-particle bunch is

Zj’:l 22:1 explio(t; —1;)].

consider the probability that the jth particle is in the
interval (¢, t;+df;] while the kth particle is in the interval
(12, tr+dt,]. For j < k, the nonzero probability for #; < 1, is

To evaluate its average,

Pty 1p)dtydt, =Pr[N(#) = j—L Nt +dty) 2 J,

14)
N({t,)=k—-1,N(t, +dt,)=k]

Using Pr[N(t+dt)—N(@)21]=1-Pr[N( +dt)— N(t) =0]
=1-exp[—v(t)dt]=v(t)dt =Pr[N(t+dt)— N(t) =1] gives

P (ty,ty)dtydt; =Pr[N(t;)—N(-e0) = j—1,
N, +dt))-N(@) =1, N(#,)- N +dt;))=k—j—1, (15)
N(t, +dt,)—N(t,)=1]

The assumption of independent process increments yields

P (. ty)dndt, = PrIN (1) = N(~e0) = j—1]
XPr[N(t, +dt,) - N(1,) =1]

(16)
XPr[N(t,)— N(t, +dt)) =k — j—1]
XPr[N(t, +dty) - N(t,) =1]
so that, for j<k
V(t )/
Pu(tyt)=H(t, - 1) D exp[-V (#)Iv(#)

(W) =Vl
(k—j-D!

Xp{-{V (1) =V )]1}v(t,)

where H(f) is the Heaviside function equaling 1 for
positive # and zero for negative .

For j>k, py(t, 1) is given by exchanging 1, and #,,
and exchanging j and k, on the RHS of eq. (17).

For the case j =k,

pi(t),1) =8t —1,)p; (1)), (18)
where p;(?) is given by eq. (4).
In all cases (j <k, j=k, and j> k), we have
I I P (tys1)dtydey = PN > max(j,k)].  (19)
The average of |T(w)|*
4T (@) [*>= S PN =n]3 T <) > (20)

n=1 Jj=1 k=1 =n
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where <explin(t D> N is the average for a bunch
=n

with n particles. The contribution to <|T(®)[*> from the
terms with j = k is

Z:;lnPr[N =nl=N @21

The contribution from the remaining terms is, after
changing the order of summation

1 k#j

oo oo

ZPr[N = nj< &0 >‘

J=1 k#j n=max(j,k) N=n 22)
=D D PN = max(j.k)k PR >‘N S .
Py 2 max(j,k)
Here,
< = [ Fa )™ dndry (23)
N=max(j,k)

where f (t1,1,) = p (1,11 [ [ 7 pyu(ty.1y)dnydr, s the

conditional probability distribution, given that the number
of particles in the bunch is at least max( j, k). Thus, the
contribution from terms with j # k is given by

Y3717 expliot, —t5)1p i (1. 1y)dtydt, .

j=lk#j

(24)

Combining the terms for j < k and j > k, we write the
contribution from terms with j # k as

oo oo

2% i [ [H(t, —t;)cos[o(t; —1,)]

Jj=1 k=j+] —eo—co

Lvapr

G-D! exp[-V (i) Iv(1,) (25)
k—j-1
(WD =V T v ) =V vy dndr,
(k—j—-D!
Performing the summations yields

2T TH(ty —1,) coslot, — 12t (i )dtydt

= T ojocos[w(tl —1t,)]v(t )v(t,)dt,dt,
T (26)

Lo
=51 [ 70T Yyt ()t dt

—o0 —oo

2

Te vyl =N |Fw)|?

—oo
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Combining egs. (21) and (26) gives the result
4T >=N+N?|F(o)[*. (27)
The variance of the bunching is
4T ()-<T(w) >>=N . (28)

PREVIOUS RESULTS

For a bunch containing a fixed number n of
independent particles, with joint probability distribution

p(t,ty,..t,)= Hn 1f(tj) , the Fourier transform of the
j=

particle line density has average value

<T,(@)>=3"_ (" 7 plty..a,)e"" dry..dr,

_ ' (29)
= Z;zlj_mf(t)e’“”dt =nF(w).
The square of its rms value is well known
T @) P>= 33 7 7 pltyd, )™ ™ ar,...d,
j=lk=1
=1+ Y D[ fmear[” ft)e ™ dt (30)
j=l jelkej

n+n(n—1)|F(03)|2,

where F(w) is the Fourier transform of f (¢) [1, 2].
For a process in which the number of particles in a
bunch varies while the particles in an n-particle bunch are

independent, <T(®)>="" Pr[N =n]nF (o) and

4T (@) >=3" PN =nl[n+n(n-1)| F()[*]. For a
Poisson distribution of bunch populations, the average of
N is N and the average of N(N —1) is N? [4], so that
these formulas give eqs. (13) and (27), as noted in Ref.
[3].

Thus, these bunching formulas for Poisson statistics
may be rigorously obtained from previous results by
showing that randomly chosen particles in an n-particle
bunch are independent with probability distribution
v(t)/ N .

For an n-particle bunch with observation times 1,,1,...t,,,
let 7,7...r;, be the ordered observation times. There are n!

bunches with ordered times 1,5...1,.
probability distribution for an n-particle bunch is
plty,ty,t) =AU n) fiy , (1], 15,..1,) » Where fi, , (#,15,..1,)
is the conditional probability distribution given that the

bunch has n particles. For a Poisson process,

The joint
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fio a(@,)dt]..dt, =Pr[N(t =0), N(t{ + dt]) =1,
N(t, =1), N(ty +dy) = 2,..N(t, +dt;) = n| y._,
=Pr[N({#)=0,N@ +dt])) =1, N(t;) =1, N(t, + dt;) = 2,
AN, +dt) =n,N() =n]/Pr[N =n]

= Pr[N(#]) = N(=o0) = 0, N(t] +di]) - N (&) =1,
N()— N +dt)) =0,..N(, +dt,)- N, =1,
N(eo)= N(£, +dt;) =01 /(N"e™™ /n1)

€19

The assumption of independent process increments yields

Fion @ t)dt]..dt, =V Dv(e)drje Y )7V )

xv(t})dey..v(t,)dt,e NV (NN [ nt) 32)
_n'H{v(zA)ldz } H{v(t}\)}dt }
Therefore,
ptytyont,) =TT V@) INT, (33)

which justifies eqs. (13) and (27).

SUMMARY

For a collimated bunch of electrons obeying Poisson
statistics with average bunch population N, we have
derived the average and rms bunching. Our results agree
with Ref. [3].

The bunching, given by the Fourier transform of the
particle line density, has average value

<T(w)>=NF(w). (34)

The mean of its square is
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4T(@)|*>=N+N?*|F(w)|*. (35)

This equals the sum of an incoherent contribution N and
Here, F(w) is the
bunch form factor, equal to the Fourier transform of the
normalized line density profile.

The variance of the bunching is independent of
frequency

a coherent contribution N?|F(w)[*.

4T(@)-<T() >>=N, (36)

and its standard deviation is VN .

In contrast, the variance of the bunching for a fixed
number n of independent particles depends upon
the frequency as <|T,(w)—-<T,(®) >|2> =n(l-| F(w) |2) .
Thus, for frequencies where |F(w)| = 1, the rms shot noise
of a fixed number n of independent particles is much
smaller than the frequency-independent shot noise of a
Poisson process with average bunch population N = n.
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