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Abstract 
Intense radiation devices such as microwave tubes, 

free-electron lasers (FELs) and masers, utilize distributed 
interaction between an electron beam and the 
electromagnetic field. Our space-frequency theory is 
extended to consider collective effects emerging while 
ultra short electron pulses are propagating in the 
interaction region. The total electromagnetic field 
(radiation and space-charge waves) is presented in the 
frequency domain as an expansion in terms of transverse 
eigen-modes. The mutual interaction between the electron 
beam and the electromagnetic field is fully described by a 
set of coupled equations, expressing the evolution of 
mode amplitudes and electron beam dynamics. 

The model is used for the analysis and simulation of 
radiation excitation and propagation in pulsed beam free-
electron lasers operating in millimeter wavelengths and in 
the Tera-Hertz frequencies. The approach is applied in a 
numerical particle code WB3D, simulating wide-band 
interaction of a free-electron laser operating in the linear 
and non-linear regimes. The model is utilized to study 
spontaneous and super-radiant emissions radiated by a an 
electron bunch at the sub-millimeter regime, taking into 
account three dimensional space-charge effects playing a 
role in such ultra short bunches.  

INTRODUCTION 
Electron devices such as microwave tubes and free-

electron lasers (FELs) utilize distributed interaction 
between an electron beam and electromagnetic radiation. 
Many models have been developed to describe the mutual 
interaction between the gain medium (electron beam) and 
the excited radiation. These models are based on a 
solution of Maxwell equations and the Lorenz force 
equation in the time domain. Contrary to space-time 
models, formulation of the electromagnetic excitation 
equations in the frequency domain inherently takes into 
account dispersive effects arising from the cavity and the 
gain medium. Moreover, it facilitates consideration of the 
statistical features of the electron beam and the excited 
radiation, necessary for the study of spontaneous 
emission, synchrotron amplified spontaneous emission 
(SASE), super-radiance and noise.  

In this paper we develop a space-frequency model, 
which describes broadband phenomena occurring in 
electron devices, masers and FELs and characterized by a 
continuum of frequencies. The total electromagnetic field 
is presented in the frequency domain as a summation of 
transverse eigen-modes of the cavity, in which it is 
excited and propagates. A set of coupled excitation 
equations, describing the evolution of each transverse 
mode, is solved self-consistently with beam dynamics 
equations. This coupled-mode model is employed in a 

three-dimensional numerical simulation WB3D [1,2]. The 
code was used to study the statistical and spectral 
characteristics of the radiation generated in a pulsed beam 
free-electron laser, operating in the millimeter and sub-
millimeter wavelengths. 

PRESENTATION OF THE 
ELECTROMAGNETIC FIELD IN THE 

FREQUENCY DOMAIN 
The electromagnetic field in the time domain is 

described by the space-time electric ( )t,rE  and magnetic 

( )t,rH  signal vectors. r  stands for the ( )zyx ,,  

coordinates, where ( )yx,  are the transverse coordinates 

and z is the axis of propagation. The Fourier transform of 
the electric field is defined by:  

( ) ( )∫=
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where f  denotes the frequency. Similar expression is 

defined for the Fourier transform ( )f,rH  of the magnetic 

field. Since the electromagnetic signal is real (i.e. 

( ) ( )tt ,, rErE =∗ ), its Fourier transform satisfies 

( ) ( )ff −=∗ ,, rErE . 

Analytic representation of the signal is given by the 
complex expression [2]: 
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is the Hilbert transform of ( )t,rE . Fourier transformation 

of the analytic representation (2) results in a “phasor-like” 

function ( )f,
~

rE  defined in the positive frequency 

domain and related to the Fourier transform by:  
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The Fourier transform can be decomposed in terms of 
the “phasor like” functions according to: 
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and the inverse Fourier transform is then: 
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THE WIENER-KHINCHINE AND 
PARSEVAL THEOREMS FOR 

ELECTROMAGNETIC FIELDS  
The cross-correlation function of the time dependent 

electric ( )t,rE  and magnetic ( )t,rH  fields is given by:  

( ) ( ) ( )[ ]{ }∫ ∫∫ ⋅×+=
+∞

∞−
tddydxttzREH zrHrE ˆ,,, ττ  (7) 

Note that for finite energy signals, the total energy carried 
by the electromagnetic field is given by 
( ) ( )0,zRzW EH= .  

According to the Wiener-Khinchine theorem, the 
spectral density function of the electromagnetic signal 
energy ( )fzSEH ,  is related to the Fourier transform of 

the cross-correlation function ( )τ,zREH  through the 

Fourier transformation:  
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Following Parseval theorem, the total energy carried by 
the electromagnetic field can also be calculated by 
integrating the spectral density ( )fzSEH ,  over the entire 

frequency domain: 
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We identify: 
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as the spectral energy distribution of the electromagnetic 
field (over positive frequencies).  

MODAL PRESENTATION OF 
ELECTROMAGNETIC FIELD IN THE 

FREQUENCY DOMAIN  
The “phasor like” quantities defined in (4) can be 

expanded in terms of transverse eigenmodes of the 
medium in which the field is excited and propagates [3]-

[5]. The perpendicular component of the electric and 
magnetic fields are given in any cross-section as a linear 
superposition of a complete set of transverse eigenmodes:  

( )
( )

( )
( )

( )
( )

( )
( )yx

efzC

efzC
f

yx

efzC

efzC
f

q zkj
q

zkj
q

q zkj
q

zkj
q

zq

zq

zq

zq

,
~

,

,
,

~

,~

,

,
,

~

⊥
−

−

+
+

⊥

⊥
−

−

+
+

⊥

∑
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

∑
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
=

q

q

H

E

rH

rE

 (11) 

( )fzC q ,+  and ( )fzC q ,−  are scalar amplitudes of the qth 

forward and backward modes respectively with electric 

field ( )yx,~
⊥qE  and magnetic field ( )yx,

~
⊥qH  profiles 

and axial wavenumber:  
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Expressions for the longitudinal component of the 
electric and magnetic fields are obtained after substituting 
the modal representation (11) of the fields into Maxwell's 
equations, where source of electric current density  

( )f,
~

rJ  is introduced:  
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The evolution of the amplitudes of the excited modes is 
described by a set of coupled differential equations:  
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The normalization of the field amplitudes of each mode is 
made via each mode's complex Poynting vector power: 

( ) ( )[ ]∫∫ ⋅×= ∗
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and the mode impedance is given by:  
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Substituting the expansion (11) in (10) results in an 
expression for the spectral energy distribution of the 
electromagnetic field (over positive frequencies) as a sum 
of energy spectrum of the excited modes: 
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The expressions for the perpendicular and longitudinal 
components of the electric field also include the full 
three-dimensional description of space-charge forces due 
to collective effects in the electron beam. In electron 
devices and free-electron lasers, the electron beam is 
usually magnetically confined in the transverse direction. 
This allows a common approximation in which transverse 
variation of the current density is neglected, i.e. 

zJ z ∂∂<<⋅∇ ⊥⊥ /
~~

J . In this case, the longitudinal 

electric field (13) gives rise to the dominant part of space-
charge forces along the e-beam pulse. Modal description 

of ( )fEz ,
~

r  consists of a summation over TM modes of 

the waveguide and the additional term 

( ) ( ) [ ]02/,
~

,
~ επ fjfJfE zz rr =Δ  identified as the 

longitudinal space-charge field in a 1D description. A 
comprehensive discussion on the modeling of space-
charge in free-electron lasers is given in reference [6] 
appearing in this issue. 

NUMERICAL RESULTS 
When the electron beam is pre-bunched to short pulses, 

the fields excited by the electrons become correlated and 
coherent summation of radiation fields from individual 
particles occurs. All electrons radiate in phase with each 
other in this situation, and the generated radiation is 
termed as super-radiant emission [7-9]. It was shown that 
energy flux of super-radiant emission is proportional to 
the square of the total charge Qb of the driving electron 
pulse and to the square of the interaction length Lw. 
However if the charge density is increased, collective 
effects force the bunch to expand along the interaction 
region, causing the particles to lose their initial phase 
coherence. As the temporal duration of the electron pulse 
approaches the period of the emitted radiation, the super-
radiance effect is suppressed and the spontaneous 
emission becomes dominant. The energy flux of 

spontaneous emission is proportional to the bunch charge 
Qb.  

We use WB3D numerical code [1,2] to simulate pulsed 
beam FEL radiation in the sub-millimeter wavelengths. 
The parameters of the FEL are summarized in Table 1. 
Trajectories of electrons obtained in the simulations with 
bunch charges of Qb=30pC and 0.5nC are demonstrated in 
the figure 1. At the entrance to interaction region, the 
pulse bT  is relatively short so as 1<<bs Tf  ( sf  is the 

frequency of the emitted radiation at synchronism), 
resulting in a strong super-radiant emission. As the 
electron bunch propagates along the wiggler, its temporal 
duration increases due to the space-charge forces, as 
clearly seen in the Fig. 1. When the temporal bunch width 
becomes 1≥bs Tf , only spontaneous emission takes 

place in the following stages of the interaction.  
The situation is illustrated in figure 2, describing the 

evolution of the energy flux spectral density of the 
radiation emitted along the interaction region. When the 
bunch charge is Qb=30 pC, the expansion of the bunch 
due to space-charge forces is relatively small, and the 
cumulative contribution of a longer interaction path to the 
radiation is considerable. However, as the charge of the 
bunch is increased (to Qb=1 nC), space-charge forces give 
rise to a fast expansion of the electron pulse so the most 
part of the radiation is emitted only at the first stages of 
the wiggler.  

In order to measure the phase coherence between the 
particles, we define a bunching factor: 

( ) ( ) ( )
∑=≡
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N

i

ztfjztfj isis e
N

ezb
1

22 1 ππ  (18) 

and draw it along the interaction region, as shown in 
figure 3. If low-charge electron bunches are applied, the 
bunching factor remains relatively high along the most 
part of its path of propagation, generating an intensified 
super-radiant emission. The total energy flux totW  grows 

fast along the wiggler. Increasing of the bunch charge 
leads to a fast reduction of the bunching factor even at the 
very first stage of the radiation buildup process, what 
results in a destruction of the emission coherence and a 
low energy flux.  

Table 1: Parameters of pulsed beam FEL operating in the 
sub-millimeter band.  

Accelerator  
 Electron beam energy: MeV 5.5=kE  

 Initial pulse duration: pS 05.0=bT  

 Pulse charge:   nC1pC30 ÷=bQ  

Wiggler  
 Magnetic induction: G  2000=wB  

 Period: cm 5.2=wλ  

 Number of periods: 20=wN  

Waveguide  

 Rectangular waveguide: 2mm 1015 ×  
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Figure 1: Electron trajectories along the interaction region 
relative to the bunch center in simulations with bunch 
charges Qb=30 pC (left) and 0.5 nC (right). Red lines 
show RMS pulse widths. 
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Figure 2: Evolution of energy flux spectral density for 
Qb=30 pC (left) and 0.5 nC (right).  
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Figure 3: Bunching factor ( )zb  and normalized total 

energy flux for different pulse charges.  
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