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Abstract 
A local and nonlinear simulation of the Raman free-

electron laser amplifier with a planar wiggler, and ion-
channel guiding is presented. Using Maxwell’s equations 
and full Lorentz force equation of motion for the electron 
beam, a set of coupled nonlinear differential equations is 
derived in slowly varying amplitude and wave number 
approximation and is solved numerically. The electron 
beam is assumed cold, propagates with a relativistic 
velocity, ions are assumed immobile and slippage is 
ignored. Ion-channel density is varied and the results for 
group I and II orbits are compared with the case when the 
ion channel is absent. It is found that by using an ion 
channel, growth rate can be increased, saturation length 
can be decreased, and the saturated amplitude of the 
radiation can be increased. 

INTRODUCTION 
For low energy but high current electron beams, a 

focusing mechanism is required in order to confine the 
beam against the self-fields. In ion focusing technique, 
the beam space charge quickly ejects the electrons of a 
pre-ionized plasma leaving an ion core. The presence of 
ions neutralizes the beam space charge, and thus 
overcomes the beam divergence caused by its self fields. 
Since the pulse duration of beams in FEL is typically 
rather short, it is assumed that ions are immobile and 
hosing instability is absent [1].   

This technique was first proposed by Takayama and 
Hiramatsu for use in FELs [2]. It was first demonstrated 
experimentally by Ozaki et al. [3] and investigated via 
numerical simulation by Yu et al. [4] and by Jha and 
Wurtele [5]. Analysis in Ref. [4] indicates that the 
combination of ion focusing and beam conditioning 
permits high gain in the soft x-ray regime. In Ref. [5], an 
averaged three-dimensional code has been developed for 
the FEL simulation that allows for the effects of an ion 
channel but in that code the effect of ion channel on the 
variation of energy was ignored i.e., the dot product of the 
transverse velocity with the electric field of the ion-
channel was not considered in Eq. (4) of Ref. [5].  
Moreover, the effect of radiation on the transverse motion 
was not considered in Eq. (2) of Ref. [5]. Therefore, a 
very limited effect of the ion channel was considered 
therein.        

Recently, the nonlinear dynamics of a single-pass FEL 
in presence of an ion channel for helical wiggler has been 
studied [6]. In this article, injection of electrons into the 
wiggler has not been considered.     

The purpose of the present study is to present a non-

averaged and nonlinear simulation of a FEL in the planar 
wiggler with ion-channel guiding in the Raman regime, 
using the simulation technique of Ref. [7]. It is important 
to emphasize that following Freund [7], no average is 
performed over the Lorentz force equation, therefore, the 
Kroll-Morton-Rosenbluth (KMR) scheme is not used [8].  
In the KMR method [4, 5, 8-10], electron trajectories are 
averaged over the wiggler period. Hence, only two 
equations are integrated per electron; specifically, for the 
energy and ponderomotive phase. 

FIELD STRUCTURE AND ELECTRON 
DYNAMICS 

The idealized tapered and planar wiggler magnetic field 
may be described by 

        ( ) ( ) ( ) ywww zkzBz eB ˆsin= ,                               (1) 
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where ( )zBw  denotes the wiggler amplitude and 

wwk λπ /2=  is the wiggler wave number. In the presence 

of an ion channel, the following transverse electrostatic 
field acts on an electron [11] 

      ( ) ( )yxii yxenyx eeE ˆˆ2, += π                                    (2) 

where in  is the number density of positive ions with 

charge e.  The vector and scalar potential of radiation and 
the space charge wave are written as 

        ( ) ( ) xzAtz eA ˆcos, += αδδ ,                                       (3) 

        ( ) ( ) αδφδφ cos, ztz = ,                                            (4) 

        ( ) tzdzk
z
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,               (5) 

        ( ) tzdzk
z
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0
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The amplitudes and wave numbers of the radiation and 
space-charge fields are assumed to vary slowly with z.  
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Equations governing dynamics of electrons may be 
derived by using relativistic equation of motion in the 
above mentioned fields. Using the dimensionless 

variables βpu γ== mc/ , xkx w= , yky w= , wkkk /= , 

wkkk /++ = , ctkt w= , and ckw/ωω = , these equations 

are  
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 where 2/ cmkeB www =Ω is the undulator parameter, 
2/ mcAea δδ = , 2/ mceδφδϕ = , and =2

iω  
222 /2 wi kmcenπ . Here +α  and α evolve according to the 

following differential equations 

       zukzdd // γωα −= ++ ,                (10) 

        zukzdd // γωα −= .              (11) 

Note that the integration parameter is changed from t to 
z , according to the relation zddtdd z // β= . The 

differential equations governing the transverse electron 
motion are 

          zx uuzdxd // =                (12) 

         zy uuzdyd // =                (13) 

  It is worth to note that the variation of energy in this 
system is given by 

( )zzi Eedtmcd eEEβ ˆ/ δδγ ++⋅−= ⊥ . 

In Ref. 5, the first term inside the parentheses in the above 
equation was left out. Also, for calculating the transverse 
velocity the effect of radiation was ignored and only the 
effect of wiggler was included. As shown in Ref 7, in the 
negative mass regime, the transverse velocity of electrons 

become large and, therefore, the first term in the above 
equation play an important role.     

RADIATION DYNAMICS 
In the Coulomb gauge, Maxwell equations can be 

written as [12] 

 ( ) ( )tzJatz x ,4// 2222 πδδ −=∂∂−∂∂ , (14) 

and 

 ( )tzJtz z ,4/2 πδδϕ =∂∂∂ ,   (15) 

 where ( )tz,Jδ is the nonlinear current density and 

( )zx JJ δδ is its component perpendicular to (along) the z-

direction. The current density can be written as an average 
over the entry time 0t (defined as the time at which an 

electron crosses the 0=z plane) 
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where 2222 /4 cmken wbb πω = , ( )0, ttβ  is the velocity at 

time t of an electron, which has crossed the entry plane at 
time 0t , ( )0tσ is the distribution in entry times, and  

  ( ) ( )∫ ′′+= −
z

z zdtzttz
0

0
1

00 ,, βτ                              (17) 

Here, ( )0,tzτ  is the time that the electron reaches z  and 

( )0, tzzβ denotes the velocity of an electron at axial 

position z which crossed the entry plane at time 0t . It is to 

be noted that in the definition of ( )tzJ ,δ the electron 

beam is assumed to be mono-energetic and is 
characterized by a vanishing pitch-angle spread. 

 A set of coupled nonlinear differential equations for the 
slowly varying amplitudes and wave numbers is obtained 
by a straightforward substitution of Eqs. (3) and (4) into 
the Maxwell equations (14) and (15). The nonlinear Eq. 
(14) can be reduced to three first-order differential 

equations for aδ , +Γ , and +k , where +Γ defines the 

growth rate (logarithmic derivative). These equations are    

            azdad δδ +Γ=/ ,                                            (18) 

           222/ +++ +Γ−−=Γ kzdd ω  

 auu zxzb δαβω //cos2 0
2

++ , (19) 
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auukzdkd zxzb δαβω //sin22/ 0
2

++++ −Γ−= , (20) 

 ωαβωδϕ /sin2/ 0
2

zbzdd −= ,   (21) 

 ( )δϕωαβω /cos2 0
2

zbk −= .   (22) 

Here, the average operator is defined over the initial 
ponderomotive phase 00 tωψ −= as 

           ( ) ( )( )∫
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where the ponderomotive phase is ( ) tzkkw ωψ −+=  

zkw+= +α . This is an average over a beamlet of 

electrons which cross the entry plane within one wave 
period. In the derivation of the above equations the wave 
equations (14) and (15) have been averaged over the wave 
period and the source currents and charge densities 
substituted. Moreover, by using a symmetry argument that 
electrons that enter the interaction regime at time intervals 
equal to ωπ /2 N , with N an integer, will have identical 
trajectories, the integral limits on t and 0t are exchanged 

[12, 13].  

NUMERICAL SOLUTION 
Equations (7)-(13) together with Eqs. (18)-(21) form a 

set of 47 +N  self-consistent first-order differential 
equations, where N  stands for the number of electrons. 
The common parameters, which are used, correspond to a 

situation in which 04.0/ =Ω γw , 7=γ , 08.0/ =γωb , 

( ) 7100 −==zaδ , and an entry taper of 10=wN wiggler 

periods. 
For un-bunched electron beam the particles are 

uniformly distributed in phase for πψ 20 0 ≤≤ . The initial 

conditions of wave fields are chosen to have resonance 
conditions according to the linear theory.  Since the 
wiggler field increases adiabatically from zero at the entry 
plane, the growth rate of the vector potential is initially 
zero as well.  Wave numbers of the vector and scalar 
potentials are chosen to satisfy the uncoupled dispersion 
equations.  The linearly polarized electromagnetic wave 
satisfies the following dispersion relation [14] 
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in the presence of ion channel.  The dispersion relation for 
the negative energy space-charge wave is 

 ( ) 0
2/1

00 / zbz k γγωβω −=− . (25) 

The equilibrium trajectories are studied in Ref. 15 and 
two types of orbits are found for different ion-channel 

densities.  For the group I orbits 2
00

2
zi βγω < and for the 

group II orbits 2
00

2
zi βγω > . Equilibrium orbits are also 

characterized by another useful quantity that determines 
the variation of the axial velocity with the electron energy 
as [15] 

              zzz cdd βγγγβ 2// Φ= ,   (26) 
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Φ  is positive for the entire range of the group I orbits and 
the group II orbits with the ion-channel frequency larger 
than a critical frequency that depends on parameters.  For 
lower ion-channel frequencies, however, Φ  is negative, 
which implies the existence of a negative mass regime in 
which the axial velocity will increase with decreasing 
energy. For the chosen parameters, transition from 
negative Φ (negative mass regime) to the positive 

Φ takes place at 1415.1/ =γωi . Since the steady-state 

amplifier model is considered, the initial amplitude of the 
vector potential for an un-bunched beam can be selected 
arbitrarily to represent the amplitude of the injected 
signal.  However, the scalar potential must be chosen 
from Eq. (22). 
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Figure 1: Evolution of radiation amplitude for group I. 

The evolution of radiation amplitude with zkw , for a 

uniform beam is shown in Fig. 1, for the group I orbits, 

and for 0/ =γωi and 36.91=+k (solid line), 

5.0/ =γωi  and 82.88=+k  (+ mark), and 

85.0/ =γωi  and 35.58=+k  (dashed line).  

In this figure two cases of group I orbits are compared 
with the one without ion-channel. It is seen that after an 
initial transient phase an extended regime of exponential 
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growth rate takes place. Afterwards, the radiation field 
reaches its maximum value when the electrons are 
trapped at the bottom of the longitudinal potential well.  
Just before the radiation field saturates, electrons are 
somewhat spatially bunched, slowed down, and are 
trapped near the bottom of the wave potential.  For the 
group I orbits, increasing the density of the ion channel, 
increases the growth rate, decreases the saturation length, 
and increases the saturated amplitude of the radiation.  
The reduction of the wave number of the radiation by 
increasing the ion channel density, but still corresponding 
to group I orbits, is due to the reduction of the axial 
velocity. 
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Figure 2: Evolution of radiation amplitude for group II. 

The evolution of radiation amplitude with zkw , for a 

uniform beam for the group II orbits is shown in Fig. 2 for 

1.1/ =γωi and 01.58=+k (solid line), 2.1/ =γωi and 

30.81=+k (+ mark), and 0/ =γωi and 

36.91=+k (dashed line).  

In this figure two cases of the group II orbits are 
compared with the one without ion channel. For the group 
II orbits, at large ion-channel densities, decreasing the 
ion-channel density, increases the growth rate, decreases 
the saturation length, and increases the saturated 
amplitude of the radiation.  It should be noted, that 
decreasing the ion-channel density, in the group II orbits, 
is somehow equivalent to increasing the ion-channel 
density, in the group I orbits, because they both move the 
electron beam closer to the resonance region [14].  In the 
negative mass regime of group II orbits, the effect of ion 
channel is stronger than in both group I orbits and the 
group II orbits with positive Φ . Increasing the ion-
channel density but still corresponding to the group II 
orbits with 0<Φ , decreases the growth rate and 

increases the saturation length. For 1415.1/ =γωi  

where 1<<Φ  the ponderomotive potential vanishes 

therefore saturation length goes to infinity. This is the 

transition point between the positive and negative Φ . By 
increasing the ion-channel density in group II orbits, the 
radiation wave number increases due to the reduction of 
the transverse velocity. 

CONCLUSION 
A local and nonlinear simulation of Raman FEL with 

planar wiggler and ion channel guiding is presented. The 
effect of ion channel on saturation length and saturated 
radiation amplitude is studied. It is shown that ion-
channel significantly reduces the saturation length and 
increases the saturated radiation amplitude. It is worth to 
state that ion channel is a less expensive alternative to 
conventional focusing magnets because of lower capital 
and running cost [2]. Moreover, it allows beam currents 
higher than the vacuum limit. 
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