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Abstract 
We present a fully three dimensional time-domain 

simulation code for free-electron lasers. Compared to the 
existing codes, we have implemented different numerical 
schemes for tracking and field calculations. The equations 
of motion of the particles are integrated with a “leap-frog” 
scheme. The parabolic field equation is resolved with 
implicit Neumann finite difference scheme based on 
azimuthal expansion. Additionally, we have implemented 
the open boundary condition with the help of perfectly 
matched layer for parabolic equation. The last feature 
allows for a mesh only in the bunch vicinity. The 
implemented field solver is accurate and fast. We prove 
the accuracy of the code with different numerical tests 
and apply the code to estimate the expected properties of 
the radiation in FLASH facility with 3rd harmonic 
module. 

INTRODUCTION 
An accurate self consistent simulation of collective 

effects in the charged beams remains a challenging 
problem for numerical analysis. During the last decades 
several numerical codes are developed to model the non-
linear process in a self-amplified spontaneous emission 
(SASE) free electron lasers (FEL). In this paper we 
present a new numerical code which is based on the 
mathematical model used earlier in such three 
dimensional (3D) codes as TDA [1], FAST [2], Genesis 
1.3 [3], GINGER [4]. However, we have implemented 
different numerical schemes for tracking and field 
calculations. The equations of motion of the particles are 
integrated with symplectic “leap-frog” scheme. The 
parabolic field equation is resolved with implicit 
Neumann finite difference scheme based on azimuthal 
expansion. Additionally we have implemented the open 
boundary condition with the help of perfectly matched 
layer (PML) for parabolic equation. The last feature 
allows for a mesh only in the bunch vicinity. The 
implemented field solver is accurate and fast. The code is 
parallelized and allows to use one dimensional, 
rotationally symmetric or fully three dimensional models. 
We prove the accuracy of the code with different 
numerical tests and apply the code to estimate the 
expected properties of the radiation in FLASH facility 
with 3rd harmonic module. 

FEL CODE DESCRIPTION 

Mathematical Model 
Following the approach of [1] the equations of motion 

for helical undulator can be derived from Hamiltonian 
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Here ( )wk k z tψ ω= + −  is a particle phase, K  is an 

averaged undulator parameter, exp( )s sa iϕ  is a 
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We split the electromagnetic field in the transverse and 
longitudinal components. The longitudinal electrostatic 
field results from the bunching and can be suggested to be 
a nearly periodic one. Then the Fourier components of the 
longitudinal field can be found from the equation [1] 
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The transverse field components fulfil the parabolic 
equation 
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If the Pierce parameter  2 1
zcρ γ ω−= Γ  is small and the 

transverse variation of the longitudinal field can be 
neglected than the following set of normalized [5] 
equations can be considered 
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where 1
0x̂ xr −= , 1

0ŷ yr −= , ( 0 2 x yr σ σ= ) are transverse 

particle coordinates, ( ) 1
0 0

ˆ ( )P γ γ γ ρ −= −  is an energy 

deviation, Ĉ  is a detuning  parameter, û is the transverse 

(in complex notation) electric field and ˆ
zE  is the 

longitudinal electric field. The other parameters in Eq. (1) 
are defined as in [5] with 1D normalization of Chapter 1. 

Numerical Scheme 
At the beginning we divide the bunch longitudinally in 

sN  slices (numerated from the tail) with the length equal 

to the radiation wavelength. The initial particle 
distribution in the slice is generated with the “quiet start” 
method [6]. For this purpose we use the Sobol sequences 
[11] and the inverse error function.   The noise statistics in 
the slice is imposed as described in [7].  The transverse 
mesh is constructed in polar coordinates with  rN  

divisions along the radius and Nϕ  divisions along the 

angle. Each slice is tracked through the undulator with 

zN  periods. The elementary volume pqtV , 1: sp N= , 

1: rq N= , 1:t Nϕ= , contains pqtN  macroparticles [7].  

The discrete equations of motion are 
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To find the transverse field we use the Fourier 
transform in azimuthal coordinate.  For each azimuthal 
mode m  we have to solve the parabolic equation (in a 
simplified notation)  
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Figure 1: The transverse mesh. 

In order to truncate the mesh at radius 0r  we use an 

absorbing layer called perfectly matched layer [8], which 
possesses the desired property of generating very low 
numerical reflection. In order to construct a mathematical 
model of the PML we introduce the complex variable 
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The change of the variable r  to r%  (and the partial 
derivative / r∂ ∂  to / r∂ ∂% ) in Eq. (2) will give us the 
required equation. This change of variable does not alter 
the solution in the area of interest ( 0r r< ), but it extends 

the solution by a fast exponentially decaying part in the 
absorbing layer 0 PMLr r r< < . 

Let us introduce the radial mesh 
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The implicit Neumann numerical scheme reads 
 1 1 1

1 1
n n n n

q q q q q q qc u b u a u f+ + +
+ −+ + = , 

 0.5

0.5 0.5 1

1

4 ( )( )
j

q
j j j j j

rz
c

iB r r r r r
+

+ − +

Δ=
− −

%

% % % % %

,

 0.5

0.5 0.5 1

1

4 ( )( )
j

q
j j j j j

rz
a

iB r r r r r
−

+ − −

Δ=
− −

%

% % % % %

, 

 
2

2
(1 )q q q

j

z m
b a c

iB r

Δ= − − −
%

, 

 ( ) (1)
1 12 2 ( )n n n n

q q q q q q q ff c u b u a u z a q+ −= − + − − − Δ . 

We supply this scheme with the discrete boundary 
condition at PMLr  
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Figure 1 sketches the used transverse mesh. The black 
points present the location of sample points for the field. 

NUMERICAL RESULTS 

Numerical Tests  
Figure 2 shows a simulation of the propagation of the 

fundamental Gaussian mode in free space. To truncate the 
mesh we use different boundary conditions. The Dirichlet 
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boundary condition, 0ˆ ˆ( ) 0u r = , spoils the solution very 

fast. The absorbing PML produces the accurate results. 
In FEL simulations the Dirichlet boundary condition 

works satisfactory in the exponential growth regime 
(linear regime), but it could spoil the correct solution after 
the saturation (non-linear regime). Figure 3 shows a 3D 
simulation for a round beam with radius ˆ 1br = . It can be 

seen that for the Direchlet condition the mesh should be 
truncated very far from the beam (at 0̂ 10r = ). On the 

contrary, the quite thin perfectly matched layer (only 7 
mesh points) allows to truncate the mesh accurately 
already at radius 0̂ 2r = . 
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Figure 2: Propagation of the Gaussian mode with PML. 
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Figure 3: The radiation power with and without PML. 
 
Figure 4 presents a comparison with the code Genesis 

1.3 [3]. We carry out a simulation with only one slice in 
amplifier model. The space of parameters corresponds to 
SASE2 undulator at wavelength of 0.1 nm as described in 
[9]. The left plot compares the radiation power at 
saturation. The first comparison was done in the January 
2008 [10] (version 1.0 of Genesis 1.3). The disagreement 
in the saturation power at the level of 20 % was obtained. 
After thorough analysis we have found that the particle 
distribution generated in Genesis 1.3 had a wrong 
statistics as can be seen from the right plot, where the 
error in the fourth moment is shown.  The used in Genesis 
1.3  the “Box-Mueller” algorithm [11] (to convert the 
uniform distribution to Gaussian one) has spoiled the 
“quiet-start” property and the statistics of the particle 
distribution. Our code ALICE uses an inverse error 
function to implement such conversion. It conserves 
“quiet-start” property of the initial distribution. The new 
version 2.0 of Genesis 1.3 released in April 2008 allows 

to use the inverse error function transformation 
(parameter inverfc=1). With this option results obtained 
by the both codes converge together. 

Figure 5 shows a comparison of the results obtained in 
the time-dependent model for SASE case. In the left plot 
the grey curve presents the radiation energy in the pulse 
as obtained with code Genesis 1.3. The black line shows 
the result from the code ALICE and the both curves 
coincide. The simulations have been done with 60000 
particles in the slice. The right plot presents the radiation 
power along the bunch averaged longitudinally through 
1500 slices. Again we see good agreement in the temporal 
structure of the radiation. 
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Figure 4: Comparison with Genesis. Periodic model. 
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Figure 5: Comparison with Genesis. SASE model. 
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Figure 6: Comparison with FAST. Periodic model. 

  
In order to test the code we have reproduced with it 

most of the numerical results obtained with code FAST 
[2] and published in [5].  For example, Figure 6 shows the 
reduced efficiency at saturation versus the diffraction 
parameter B . 

Expected Radiation in the FLASH with 3rd 
Harmonic Module 

In order to linearize the energy chirp before the first 
bunch compressor the third harmonic module will be 
installed at FLASH at the end of 2009.  

To find working points, to define the tolerances and to 
characterize the parameters of the bunch at the undulator 
entrance we have done series of “start-to-undulator” 
simulations for different bunch charges [12].  
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In these simulations we have tried to take into account 
the most important “self-fields” such as wake fields, 
space-charge fields and synchrotron radiation in the 
bunch compressors. The tracking was done with a simple 
one dimensional model like that used in Litrack code of 
K. Bane [13]. The results were checked with full 3D 
simulations with codes ASTRA [14], CsrTrack [15] and 
GlueTrack [12].  

Figure 7 shows the longitudinal phase space as 
obtained by 1D and 3D tracking. The right plot presents 
the charge density in the longitudinal phase space. 
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Figure 7: Longitudinal phase space for 1 nC. 
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Figure 8: Current and emittance for different charges. 
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Figure 9: Radiation energy. 

 
The left plot in Figure 8 describes the current profiles 

at the undulator entrance for bunches with different 
charges. The right figure shows the horizontal emittance 
in the bunch core. The bunch compressors in FLASH are 
oriented horizontally and have negligible impact on the 
vertical emittance, which is in our simulations always 
smaller then the horizontal one. 

We have extracted the all slice parameters from the 
particle distributions and used them to carry out full three 
dimensional FEL simulations with code ALICE.  

Figure 9 presents the evolution along the undulator of 
the radiation energy in SASE mode for different bunch 
charges. The full set of plots for different characteristics 
of the obtained radiation can be found in [16]. 

Table 1: Radiation Properties 

 With 3rd harmonic 
module 

Without 
[17] 

Charge, nC 1 0.5 0.25 0.5-1 

Wavelength, nm 6.5 6.5 6.5 6 

Bunch energy, MeV 1000 1000 1000 1000 

Peak current, kA 2 2 1.7 1.3-2.2 

Slice emittance, 
mkm 

1.2-2 0.7-2 0.6-2 1.5-3.5 

Saturation length, m 20 20 20 22-32 

Energy in the 
radiation pulse, mkJ 

700 400 200 50-150 

Radiation pulse 
duration at 80% of 

contrast, fs 

200-
300 

100-
200 

50-
140 

 

Radiation pulse 
duration FWHM, fs 

100-
250 

35-
150 

25-
100 

15-50 

Averaged peak 
power, GW 

3 3 3 2-4 

Spectrum width, % 0.4-
0.5 

0.4-
0.5 

0.4-
0.5 

0.4-0.6 

Coherence time, fs 4-5 4-5 4-5  

 
The main characteristics of the radiation are collected 

in Table 1. The right column gives for comparison the 
results obtained in [17] for the scenario without the third 
harmonic module. 
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