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Abstract

In a harmonic generation free electron laser (HG FEL),
the electron bunch entering the undulator can have an initial
energy curvature besides an initial energy chirp. Solving
the Vlasov-Maxwell equations within the 1D model, we
derive an expression for the Green function for the seeded
HG FEL process for the case of the electron bunch having
both an energy chirp and an energy curvature. We give an
asymptotic closed form which is a good approximation in
the exponential growth regime, and a series expression that
allows the evaluation of the field envelope along the undu-
lator in both lethargy and exponential growth regime. The
latter is useful to study the HG FEL behavior in the short
modulator, like that of the FERMI@Elettra project. The
FEL radiation properties such as central frequency shift
and frequency chirp are studied considering Gaussian laser
seeds of different temporal duration with respect to that of
the Green function. The energy chirp and curvature of the
electron bunch result in a time dependent bunching factor
for the FEL start-up process in the radiator of the HG FEL
like the FERMI@Elettra. The coherence properties of the
FEL are examined.

INTRODUCTION

For a Harmonic Generation Free Electron Laser (HG
FEL) a high quality electron bunch with low (slice) emit-
tance, low (slice) energy spread, but high peak current and
high centroid energy are needed. During the process of ac-
celeration, bunch compression and transportation, the elec-
tron bunch is subject to the radio frequency curvature and
wakefields effects. Thus, the energy profile of the electron
bunch can undergo modifications, and in particular it can
acquire a linear chirp and a quadratic energy curvature, that
can have an impact on the FEL process. Figure 1 represents
the schematic of an HG FEL: in the modulator a laser seed
imprints an energy modulation on the electrons; in the dis-
persive section the energy modulation is converted to den-
sity modulation, so that the electrons current distribution
functions contains a frequency content at higher harmonics.

∗ alberto.lutman@elettra.trieste.it. This work was supported in part
by the Italian Ministry of Univeristy and Research under grants FIRB-
RBAP045JF2 and FIRB-RBAP06AWK3

† Work supported by the United State of America, Department of En-
ergy under contract DE-AC02-76SF00515. The work was performed in
support of the Linac Coherent Light Source project at SLAC National Ac-
celerator Laboratory

However, due to the energy chirp and curvature, the elec-
tron bunching at the radiator entrance presents a quadratic
phase that can have a strong impact on the FEL radiation.
In this paper, within the 1D Vlasov-Maxwell equations
framework, as done in Ref. [1] for the Self-Amplified
Spontaneous Emission (SASE) FEL and Ref. [2] for a
seeded FEL, in case of a linear chirped electron bunch,
we derive time dependent Green functions considering the
laser seed and an initial denisity modulation as sources for
the FEL process, without using asympthotic approxima-
tions, for the case of both linear energy chirp and quadratic
curvature on the electrons. Further we give formulas to
evaluate the phase of the bunching at the radiator entrance
for a given electrons energy profile. Finally we discuss
the results, considering the case of the FERMI@Elettra
HG FEL with different possible electron distributions at the
modulator entrance.

Modulator RadiatorChicane

Figure 1: HG FEL layout.

DERIVATION

In order to study the evolution of HG FEL, we analyze
the coupled Vlasov and Maxwell equations, which describe
the interaction between the electrons and the electromag-
netic field [3], both in the modulator and in the radiator.
We solve this set of equations providing a series expansion
solution for the FEL Green function for the initial condi-
tions of laser seed and electron bunching, in case of a linear
chirp and curvature on the electrons energy. To evaluate the
bunching at the undulator entrance we will consider its am-
plitude using the formula provided in [4, 5] with total phase
advance in both the modulator and the dispersion section.
Due to the overall energy chirp and curvature in the elec-
tron bunch, the phase accumulated in the non zero length
modulator and in the dispersive section are explicitly in-
cluded.

Coupled Vlasov-Maxwell Equations

We adopt the notations of Refs. [1, 2]. We use the di-
mensionless variables 𝑍 = 𝑘𝑤𝑧 and 𝜃 = (𝑘0+𝑘𝑤)𝑧−𝜔0𝑡,
where 𝑧 is the longitudinal coordinate, 𝑘𝑤 = 2𝜋/𝜆𝑤, with
𝜆𝑤 the undulator period, 𝑘0 = 2𝜋/𝜆0, with 𝜆0 the radi-
ation wavelength and 𝜔0 = 𝑘0𝑐, with 𝑐 the velocity of
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light in the vacuum. As a measure of the energy devia-
tion, we also introduce the quantity 𝑝 = 2(𝛾 − 𝛾0)/𝛾0,
where 𝛾 is the Lorentz factor of an electron of the bunch
and 𝛾0 the Lorentz factor in resonance condition. For a pla-
nar undulator, the latter quantity satisfies the relation 𝜆0 =
𝜆𝑤(1 + 𝐾2/2)/(2𝛾2

0), where the undulator parameter is
𝐾 ≈ 93.4𝐵𝑤𝜆𝑤, with 𝐵𝑤 the peak magnetic field in Tesla
and 𝜆𝑤 the undulator period in meters. The electron distri-
bution function is denoted as 𝜓(𝜃, 𝑝, 𝑍) and the FEL elec-
tric field is written in the form 𝐸(𝜃, 𝑍) = 𝐴(𝜃, 𝑍)𝑒𝑖(𝜃−𝑍),
with 𝐴(𝜃, 𝑍) being the slow varying envelope function.
Following [1, 2], the one dimensional linearized Vlasov-
Maxwell equations are expressed by:

∂𝜓

∂𝑍
+ 𝑝

∂𝜓

∂𝜃
− 2𝐷2

𝛾2
0

(
𝐴𝑒𝑖𝜃 +𝐴∗𝑒−𝑖𝜃

) ∂𝜓0

∂𝑝
= 0, (1)

(
∂

∂𝑍
+

∂

∂𝜃

)
𝐴(𝜃, 𝑍) =

𝐷1

𝛾0
𝑒−𝑖𝜃

∫
𝑑𝑝𝜓(𝜃, 𝑝, 𝑍), (2)

where the asterisk denotes the complex conjugate, the inte-
gral is defined on the whole 𝑝 domain, and, in SI units:

𝐷1 =
𝑒𝑎𝑤𝑛0[𝐽𝐽 ]

2
√
2𝑘𝑤𝜀0

, and 𝐷2 =
𝑒𝑎𝑤[𝐽𝐽 ]√
2𝑘𝑤𝑚𝑐2

, (3)

with 𝑒 and 𝑚 being the charge and the mass of the elec-
tron, respectively, 𝜀0 the vacuum permittivity, 𝑛0 the elec-
tron bunch density, and [𝐽𝐽 ] = 𝐽0[𝑎

2
𝑤/2(1 + 𝑎2𝑤)] −

𝐽1[𝑎
2
𝑤/2(1+𝑎2𝑤)], where 𝑎𝑤 = 𝐾/

√
2 is the dimensionless

rms undulator parameter, while 𝐽𝑛 is the Bessel functions
of the first kind of n-th order. Finally, the function𝜓0 in Eq.
(1) is defined as a solution of the equation ∂𝜓

∂𝑍 + 𝑝∂𝜓∂𝜃 = 0.
For an electron bunch with both linear energy chirp and
curvature, we take 𝜓0 = 𝛿

(
𝑝+ 𝜇𝜃0 + 𝜈𝜃20/2

)
with 𝜃0 =

𝜃 − 𝑝𝑍 and 𝜇 = 2
𝛾0𝜔0
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∣∣
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and 𝜈 = − 2
𝛾0𝜔2

0

𝑑2𝛾
𝑑𝑡2

∣∣
∣
𝑡=0

characterizing the linear chirp and the curvature respec-
tively. We solve Eq. (1) for a small perturbation 𝜓1 of
𝜓0 neglecting ∂𝜓1

∂𝑝 term obtaining:

𝜓1 =
𝐷2

𝛾2
0

𝑒𝑖𝜃
∂𝜓0

∂𝑝

∫ 𝑍

0

𝑑𝑍1𝑒
𝑖𝑝(𝑍1−𝑍)𝐴 [𝜃 − 𝑝 (𝑍 − 𝑍1) , 𝑍1]

𝑒𝑖(𝜃−𝑝𝑍)𝐹 (𝜃 − 𝑝𝑍) (4)

The 𝑒𝑖(𝜃−𝑝𝑍)𝐹 (𝜃 − 𝑝𝑍)
∣∣
𝑍=0

= 𝑒𝑖𝜃𝐹 (𝜃) can be used to
take into account an initial electron distribution function
perturbation as FEL start-up. We will consider initial con-
dition 𝐹𝑏 ∝ 𝛿

(
𝑝+ 𝜇𝜃0 + 𝜈𝜃20/2

)
for an initial density

modulation. Substituting Eq. (4) into Eq. (2), integrat-
ing over 𝑝, supposing 𝜇𝑍 ≪ 1 and 𝜈𝜃𝑍 ≪ 1, and using
the Laplace transform:

𝑓(𝑠, 𝜃) =

∫ +∞

0

𝑒−𝑠𝑍𝐴(𝜃, 𝑍)𝑑𝑍, (5)

one obtains:

∂𝑓(𝑠, 𝜃)

∂𝜃
+

(

𝑠− 𝑖(2𝜌)3

[𝑠− 𝑖(𝜇𝜃 + 𝜈𝜃2/2)]
2

)

=

𝐴(𝜃, 0) +
𝑖𝐷1/𝛾0𝐹𝑏(𝜃)

𝑠− 𝑖𝜃(𝜇− 𝜈𝜃/2)

(6)

where 𝜌 denotes the Pierce parameter [8].
Equation (6) is solved by:

𝑓(𝑠, 𝜃) =

∫ 𝜃

−∞
𝑑𝜃1𝑒

∫
𝜃

𝜃1
𝑠− 𝑖(2𝜌)3

[𝑠−𝑖(𝜇𝜃2+𝜈𝜃2
2
/2)]2

𝑑𝜃2

×
[

𝐴(𝜃1, 0) +
𝑖𝐷1/𝛾0𝐹𝑏(𝜃1)

𝑠− 𝑖(𝜇𝜃1 + 𝜈
𝜃21
2 )

] (7)

Using the following convenient notation:

𝑧=2𝜌𝑍, 𝑠=𝜌𝜃, 𝜉=𝜌(𝜃 − 𝜃1), 𝛼̂=−𝜇/(2𝜌2), 𝑝=𝑠/(2𝜌)
(8)
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1
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∫ 𝑧/2

0
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𝑒

4𝑖𝛽
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3
2
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)

𝑒
4𝑖

𝑎2−2𝑖𝑝𝛽

(
𝛼̂−𝑠𝛽

2𝑖𝑝−2𝑠𝛼̂+𝑠2𝛽
+

𝛼̂−𝛽(𝑠−𝜉)

−2𝑖𝑝+(𝑠−𝜉)[2𝛼̂−𝛽(𝑠−𝜉)]

)

[
𝐴(𝑠− 𝜉) + 𝑖𝐷1/(𝛾0𝜌)𝐹𝑏(𝑠−𝜉)

2𝑝+𝑖(𝑠−𝜉)[2𝛼̂−𝛽(𝑠−𝜉)]

]

(9)

where 𝑐𝑝 denotes the integration path for the inverse
Laplace transform. Eq.(9) gives the electric field envelope
along the undulator as sum of a seed and a density modula-
tion term. A time dependent Green function can be deter-
mined performing the contour integral before the convolu-
tion with the source term, and the latter equation rewritten
as

𝐴(𝑠, 𝑧) =

∫ 𝑧/2

0

𝑑𝜉
[
𝐺𝑠𝐴(𝑠− 𝜉) +𝐺𝑏𝐹𝑏(𝑠− 𝜉)

]
(10)

The Green function for the start up from a laser seed with
electron bunch having linear energy chirp and curvature has
been determined in [6] using a saddle point approximation
method to perform the contour integral. A more accurate
result, especially for short undulators, can be determined
by performing the inverse Laplace transform exactly. This
can be accomplished for each source term, by exploiting
the residual theorem in conjunction with a series expansion
of the integrand function. In particular for starting up from
a laser seed, we introduce an auxiliary integral that fulfills
the conditions of the Jordan’s Lemma, which is related to
the original integral. The integrand function presents two
essential singularities and the integral is evaluated expand-
ing the integrand into Laurent series of 𝑝 and determining
analytically the 𝑝−1 coefficient. Similarly, but without us-
ing an auxiliary integral, a formula for the bunching Green
function has been derived.
The Green function for a seeded FEL and the one for the
initial density modulation have been found as:

𝐺𝑠 =
∞∑

𝐽=1

𝐽−
∑𝑙−1

𝑘=1
𝑊𝑘∑

𝑊𝑙=0
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∑∞

ℎ=1
ℎ𝑊ℎ+2𝐽−1

(
∑∞

ℎ=1 ℎ𝑊ℎ + 2𝐽 − 1)!
×

(2𝑖𝜉)𝐽−
∑∞

ℎ=1
𝑊ℎ

𝐽 −∑∞
ℎ=1 𝑊ℎ

𝑇 (𝑙)

𝑊𝑙!
+ 𝛿(𝜉 − 𝑧/2)

(11)
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𝐺𝑏 =

∞∑
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∑∞
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where 𝑙 are non negative integers and

𝑇 (𝑚) =

𝑚∑

𝑛=0

(𝑠2𝑚−𝑛+1 − (𝑠− 𝜉)2𝑚−𝑛+1)

(2𝑚− 𝑛+ 1)2𝑚−𝑛−1𝑛!(𝑚− 𝑛)!

× 𝑖𝑚+1(𝑚+ 1)!(−𝛼̂)𝑛𝛽𝑚−𝑛
(13)

𝑅(𝐻) =
𝐷1

𝜌𝛾0

𝑖3𝐻+1

2𝐻
((𝑠− 𝜉)(2𝛼̂− 𝛽(𝑠− 𝜉)))𝐻 (14)

Bunching at the Undulator Entrance

To study the evolution of the FEL pulse along the radia-
tor, we need to determine an expression for the bunching at
the radiator entrance. To this aim we consider an electron
bunch with both energy linear chirp and curvature having
a Gaussian energy distribution on a fixed phase coordinate,
characterized by the rms Lorentz factor 𝜎𝛾 . Through the
first modulator the laser seed induces an energy modulation
Δ𝛾 on the Lorentz factor. The amplitude of the bunching
factor for the 𝑛-th harmonic has been evaluated analytically
in [4], for a given strength of the dispersive section 𝑑𝜃

𝑑𝛾 as

∣𝐵𝑛∣ = 𝑒−
1
2𝑛

2𝜎2
𝛾( 𝑑𝜃

𝑑𝛾 )
2

𝐽𝑛

(
𝑛Δ𝛾

𝑑𝜃

𝑑𝛾

)
(15)

with
𝑑𝜃

𝑑𝛾
=

2𝜋𝑁𝑤

𝛾0
+

𝑘0 + 𝑘𝑤
𝛾0

𝑅56, (16)

which includes the phase advance both in the modulator
and the dispersion section [5] with 𝑁𝑤 being the number
of period in the modulator and 𝑅56 characterizing the dis-
persion strength in the chicane. Beside the amplitude of
the density modulation, we determine a phase accumulated
through the modulator and the dispersive section due to the
overall energy chirp and curvature on the electron bunch.
For a short undulator we can evaluate with good approx-
imation the phase from the linearized pendulum equation
𝑑𝜃
𝑑𝑧 = 𝑘𝑤2

𝛾−𝛾0
𝛾0

. For a 𝑁𝑤 periods modulator, this yields a
contribution Δ𝜃𝑀 to the bunching phase:

Δ𝜃𝑀 (𝜃) = 4𝜋
𝛾(𝜃)− 𝛾0

𝛾0
𝑁𝑤. (17)

Similarly the dispersive section gives its own contribution
to the phase Δ𝜃𝐶 . For a give 𝑅56 value it can be calculated
as

Δ𝜃𝐶(𝜃) = (𝑘0 + 𝑘𝑤)
𝛾(𝜃)− 𝛾0

𝛾0
𝑅56. (18)

At the 𝑛-th harmonic, the bunching factor will be finally
evaluated as

𝐵𝑛(𝜃) = ∣𝐵𝑛∣𝑒𝑖𝑛[Δ𝜃𝑀(𝜃)+Δ𝜃𝐶(𝜃)]. (19)

DISCUSSION

The bandwidth of the seeded FEL Green function with
both energy linear chirp and energy second-order curvature
has been calculated in [6], while the effects on the radiation
like central frequency shift and frequency chirp for seed of
different lengths are discussed in [7]. The non asymptotic
approximated formula in Eq. (11) presents a Dirac delta
pulse at 𝜉 = 𝑧/2 which takes into account the seed travel-
ing at the velocity of light through the undulator. Further-
more Eq. (11) allows us to use a wider range of values for
𝛼̂ and 𝛽 since for the approximated one an order analysis
was adopted to determine the saddle point.
When convoluted with a constant bunching at the undula-
tor entrance, Eq. (12) gives an electric field envelope that
grows linearly during the start-up and then evolves in the
exponential growth regime as shown in Figures 2 and 3.
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Figure 2: Electric field envelope peak growth as function
of the undulator periods.
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Figure 3: Electric field envelope peak growth as function
of the undulator periods with log scale.

We consider now an HG FEL with the set of parameters
employed in the FERMI@Elettra project. The modulator
is 19 periods long, and it is tuned at a wavelength of 240
𝑛𝑚, the 𝑅56 parameter characterizing the dispersive sec-
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tion is 30 𝜇m and the radiator is 400 periods long and is
tuned on the 10-th harmonic of the modulator wavelength.
We consider two possible initial distribution functions for
the electrons at the modulator entrance, that have been gen-
erated with LiTrack [10] and an ideal flat-energy electron
bunch. Fitting the particle distribution with a second order
polynomial, we calculate the linear chirp and quadratic cur-
vature parameters needed for our calculations, which are
reported in Table 1. The r.m.s. uncorrelated energy spread
for electron distributions is set to 150 keV. The laser seed
at the undulator entrance is supposed to be constant in am-
plitude, and longer than the electron bunch, and induces a
modulation of 1.5 MeV. To show the effects on the linear

Table 1: Electron Bunches Parameters

Bunch Energy Lin. Chirp Curvature

FB 1140 MeV 0 MeV/fs 0 MeV/fs2

B1 1140 MeV 1.4 10−5 MeV/fs 3.2 10−6 MeV/fs2

B2 1140 MeV 2.2 10−3 MeV/fs 6.5 10−6 MeV/fs2

chirp and curvature after the radiator, we use the Wigner
function [9] defined as:

𝑊 (𝑡, 𝜔, 𝑧) =

∫
𝐸(𝑡− 𝜏/2, 𝑧)𝐸∗(𝑡+ 𝜏/2, 𝑧)𝑒−𝑖𝜔𝜏𝑑𝜏

(20)
Figures 4, 5 and 6 shows the Wigner function plot for the
three different bunches considered. The ideal flat bunch
yields an unchirped FEL pulse with the shortest bandwitdh.
In the other cases instead, the FEL pulse presents a larger
bandwidth and a strong frequency chirp, in fact, the curva-
ture on the electron energies yields a parabolic behavior of
the phase of the bunching at the radiator entrance, which
gives a frequency chirped radiation. The pulse generated
by the bunch B2 as shown in Fig. 6 presents a larger fre-
quency chirp and a shorter temporal length compared to
the pulse of B1 in Fig. 5 due to the larger curvature on the
electrons energies.
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Figure 4: Wigner function plot for the FB case.

CONCLUSION

In this paper we derived, without using a saddle point
approximation, the Green functions for an FEL considering

δ t [fs]

δ 
ω

[H
z]

−60 −40 −20 0 20 40 60

−6

−4

−2

0

2

4

6

x 10
14

Figure 5: Wigner function plot for the B1 case.
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Figure 6: Wigner function plot for the B2 case.

as possible initial start-up conditions a laser seed and an
initial density modulation. For the HG FEL configuration
we evaluated the bunching at the radiator entrance in both
amplitude and phase. A curvature on the electron energies,
yields a parabolic phase behavior which is translated into a
frequency chirp on the FEL pulse in the radiator.
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