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STOCHASTIC TEMPORAL PROPERTIESOF THE SASE FEL*
S. Krinsky”, BNL, Upton, NY 11973, U.SA.

Abstract

We review the statistical description of the chaotic time
evolution of the radiation from a self-amplified
spontaneous-emission free-electron laser in the linear
region before saturation.

INTRODUCTION

A high-gain, self-amplified spontaneous-emission
(SASE) free-electron laser (FEL) [1, 2], based on modern
beam technology, has the advantage of operating without
a resonator and hence is capable of generating coherent
radiation with wavelength down to the x-ray region. The
LCLS at SLAC has recently achieved high gain and
saturation at 1.5 A [3]. A review of SASE theory can be
found inref. [4].

The gain in an FEL is based on the constructive growth
of a microbunching instability in an electron beam, which
grows as the result of an interaction between the electron
beam and the electromagnetic wave it emits asit traverses
the magnetic field of the undulator. The instability
modulates the electron density on the scale of the
rediation wavelength resulting in coherent radiation.
Provided that the instability is strong enough, the
radiation grows exponentially before reaching saturation.
The wavelength of an FEL is determined by the resonance
frequency
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Here y is the relativistic factor of the beam, and 4,, and
a,, are respectively the undulator period and rms field

strength parameter.

The SASE FEL starts up from the shot noise in the
electron beam [5-7]. The temporal behavior of the system
is that of a narrow-band amplifier with a broadband
Poisson seed. Before saturation the output is a Gaussian
random process and the radiated field is chaotic, quasi-
monochromatic, polarized light. Near saturation, the
transverse behavior of the output is dominated by an
intense, single spatia mode. Ignoring the transverse
dependence, the radiated electric field can be expressed in
the form

@

E(zt)= A(zt) explik, z—iw, t), 2
where z represents the location along the undulator at
which the SASE is observed and t represents the temporal
position in the radiation pulse. The SASE field before
saturation is the superposition of many electromagnetic
wave packets emitted from randomly distributed,
individual electrons.  Within the classicd, one-
dimensional theory, the dowly varying envelope can be
approximated by
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where N,is the total number of electrons in the bunch,
Ao(2) contains the exponential growth factor, t; is the

random arrival time of the jth electron at the undulator

2
entrance, and vy = @, /(kr +§kwj. The wave packet

width o :1/(\/5 %)a where o, =a)m/3\/§p/sz is
the SASE bandwidth [5,6] and p the FEL Pierce
parameter [2].

STATISTICAL DESCRIPTION

Overview

To describe the shot noise, one considers the arrival
time of the individual electrons at the undulator entrance
to be independent random variables, and determines the
statistical properties of the output radiation by averaging
over the stochastic ensemble of arrival times. In the
linear regime before saturation, the Central Limit
Theorem implies that the probability distribution for the

spectral intensity | (), or the time-domain intensity 1(t),
is the negative exponential distribution [8-11]

P =e ), @
(1)
and the intensity fluctuation is 100%. The bracket
indicates an ensembl e average over the arrival times.
The output intensity as a function of time exhibits
spiking [12] (see Fig. 1a), and the width of the intensity
peaks is characterized by the coherence time [8-16],

T.n =7 /0, , where o, isthe SASE gain bandwidth.
The spectral intensity also exhibits spikes (Fig. 1b), and
the width of the spectral peaksisinversely proportiona to
the pulse duration.

At afixed position z along the undulator, consider the
energy inasingle SASE pulse,

W(2) = [ |[E(t,2)| ot . (5)

For z fixed, one can think of dividing the pulse into M
statistically independent time-intervals of width T, .
The energy fluctuation within a single coherent region is
100%, but the fluctuation oy, /W of the energy in the
entire pulse isreduced [8-11,14],
2
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Figure 1:

©

(@ Intensity spiking in the time-domain. Width of peaks is characterized by the coherence timeT,,,

(b) Intensity spiking in the frequency-domain. Width of spectral peaks Q,, inversely proportional to pulse length.
(c) Average spectrum of many SASE pulses. Spectral width Q , inversely proportional to the coherence time.

The energy per pulseis described approximately by the
gamma distribution [8-11],

M-1
MM ([ w 1 w
PwW)=——=|—c| s—exp-M_—c|. (7)
r(m[w W) ( W)
For an unchirped Gaussian pulse of rms duration
oy > Ty, Table 1 provides useful guidance [16]:

Table 1: Approximate description of SASE statistics.

Number of modes M =20, 0,

Pulse duration T, = 27 o,

Coherence time Teon =Tp /M = Jr lo,

Temporal spike rms width

(5t)=Toy I N2r

Temporal spike separation

(At)zx/ﬂlaw

Spectral width Q,=2 Jro,

Range spectral coherence Qe =Q, /M= NE o,

Frequency rms spike width

(00) = Qo 121

Frequency spike separation

(Aw)z\/glat

Mathematical Formalism
The mathematical formalism presented here is valid for
ageneral random process E(t) with (E(t))=0. It need be

neither stationary nor Gaussian. The Wigner function
[17], defined by

W(t,a))zfdr<E(t—gE*(t+g>exp(—iwz'), (8)

has many of the properties of a phase space density,
athough it can take negative values. Integrating the
Wigner function over frequency, we obtain the average
instantaneous intensity,

(EF) =] 52wt o) ©
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and integrating over time, the average spectral intensity

<E<w>{2> — faw(o).

The number of temporal modes M in a radiation pulse
should be equal to the ratio of the area of the time-
frequency phase space it occupies divided by the
minimum required phase space area. With this in mind,
the number of modes M can be expressed in terms of the
Wigner function via,

(10)

Wz(t, o)

1
M Udt;]'r‘” W(t,a))j2 |

Working in the time domain, Eq. (11) can be written in
theform[9]

[
2 (11)

1 _ [t |(EG)E* L)

: (12)
M w?
where the integrated intensity W is given by
dtdaw, 2
W= [ L%%y (¢, )= dt<Et > 13
[ 5, Wt @)= [ a{EC) (13)
The Schwartz inequality implies M >1.
Let us define the radiation pulse duration T, by
2
2
1] dt<|E(t)| >
T =, (14)
" (Fafeer)
and define the coherence time T, by
Ton =T, /M. 15
It follows from (12), (14) and (15) that
. 2
_ [ dtydty [(E(t)E* (t,) ' 1)

2 2
Jat([EF)
Working in the frequency domain, we can express the
number of modes as,
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dw, dw, |/ = -
[ 2| Eler) Ele,)
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M WE
We define the spectral width Q , of the pulse by
~ 2 2
J.d4><‘E(a))‘ >
1
o, o (18)
and the range of spectral coherence by
Qeonh=Q, /M. (19)
Then the range of spectral coherenceis given by
2
Jdordo | E(0r) - (0,)
coh = (20)

]

The fluctuation of the integrated intensity oy is

o =| dtldt2[<| Eft,) E(t2)|2> —<| E(tl)|2><| E(t2)|2>} D)
For a Gaussian random process with zero mean [8-11],
(EfE* ) = (EGIIEG)) - (EQ)7)EC)) - @2

In this specia case, valid for SASE in the linear regime
before saturation, it follows from Egs. (11,21,22) that
0'\,2\, 1
W M (23)
Smplified Model of SASE Pulse
A full treatment of SASE from a Gaussian bunch would
take into account the dependence of the FEL gain on the
electron density profile, which results in a dependence of
the wave packet duration o [Eq. (3)] on the temporal
position in the pulse. Here, we shal ignore this
dependence and consider constant o .
We suppose the electron bunch to have a Gaussian
average density profile

wy (t)= L
N2 oy
and consider the time dependence of the SASE amplitude
(2) observed at a fixed position z. Suppressing the
dependence on z, we write the complex, slowly varying
amplitude in the linear region before saturation as

(—Z (t-t;F

= +ia),t]-} (25)

expl-t2/202), 24)

A= Ao S exp

j=1
where y=1+ix with x=1/4/3. The times t, ae

randomly distributed according to the Gaussian
distribution W, (t) of Eq. (24). We assume that
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w, 0y & w0 >>1, 0 (Alt))=0. Averaging over the
stochastic ensemble, we find the correlation function [16]

<A(t1) A* (t2)> =

N [—(1+x2)o§<t1—t2>2—zoz(ztfw*ts)J (29)
\/oﬁ+0'2 8lo; +0°) o
and the Wigner function [16],

2 2 PR
W(La)):Mexp _t_Z_M , (27)
00,0 20; 20,

where,
o2 =?+0? o2 _1+K2_ K2 K (28)
‘ b oo 40?2 40}2 20}2
Aw

>
)
S
g

Figure 2: Region of phase space occupied by
radiation. Aw=w-o, . Areais2r o0, .

Integrating the Wigner function over frequency we obtain
the average instantaneous intensity,

N 2
[ 99\t )= NeTM ept2/267),  (29)
2 oy
and integrating over time, the average spectral intensity

27N A
(o)

[dtw(t, w) exp[—(a)—a)r )? /20'02,]. (30)

«

It is seen that the rms radiation bandwidth is given by
02 =02y +u’c? = (1+ Kz)/ 402,
In ref. [16], the resultsin Table 2 are derived.

(31)

Table 2: Statistical propertiesin model.

Number of modes M =26, 0, = 402 02 +1
Pulse energy fluctuation Gy IW =1/ NIY)

Pulse duration T, =2 Jr o,

Coherence time Toon =T /M = Jr ! G oo
SpeCtraI width Q o= 2 \/; c,

Range of spectra Q,

coherence Qeoh = NVl
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FREQUENCY CHIRPED SASE

Characterization
Consider an electron beam passing through an undulator
having period A, =27z/k,and rms field strength

parameter a,. The j" electron has energy 7j (in units

of its rest mass), average longitudina velocity

2}/12

attime t; . We suppose the electron beam energy to have
alinear chirp [18-21] & specified by

V=% t;

—_— = —

Yo Ty

where T, is the full temporal width of the uniform

is the longitudina

1+a2 .
v;=¢1l- , and arrives at the undulator entrance

, (32)

density electron pulse and ct;
deviation from the beam center t; =0. From Eq. (1), we
see that the energy chirp gives rise to a linear frequency
chirp

W, = +utj,

J (33)

where u = 20w, /T, .

Figure 3: Time-frequency phase space for chirped
radiation.

In the exponential growth regime before saturation, the
SASE electric field hasthe form
Ne .
E(Z,t)‘x Z elkafle(tftj)g(z’t_tj;u)’ (34)
j=1

where the green’s function can be approximated by [21],

glzt-t;u)= ep<ﬁ+i)sze-b[t_tj-vzj o))
(35)

The wave number of radiation from the jth electronis

2
K :ﬂzkw[ % Jz 2
c-V; 1+ay,

(36)

The complex parameter b is defined by
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b=—|1+—|0,. 37
) 0
To analyze the statistical properties of the chirped
SASE output, we consider the arrival times t;jto be

random variables and average over the uniform stochastic

ensemble. The time correlation function is [21]
<E(Z,t—rj5*(2,t +Tj> oc g2PV3Ku2 eT[FE]é(“’U*“‘V g2,
2 2
(38)
We find the coherence time
T =7 lo,, (39)

and the number of modesin the chirped radiation pulse

M=T, /Ty =0,T, /7, (40)
are independent of the energy chirp.
The frequency correlation functionis[21]
- - 1z, z) e o
o 2 Qs TSt %
(41)
and the range of spectral coherence
Qeon =[UTy /M =[UlTey, . (42)

In the absence of the frequency chirp, Q., =27/T,. In
this paper, when we consider a chirped electron beam, we
assume that |U[Ty, >> 27 /Ty,

The Wigner function is given by [21]

i)

(43)

W(zt, @) o €27V3k2 exp

Pulse Sicing Using Monochromator

One can use a monochromator to select a short portion
of the frequency chirped radiation pulse [19,20]. In order
to investigate the properties of such filtered output, let us
assume that the electric field Eg(t,z) after the

monochromator has the form

Ee (z,t)=jd§we‘”"t E(z o) exp{—(w;o_—wzm)z] (44)

m
where E(w,z) is the Fourier component of the electric

field before the filter. The time-correlation function of
the filtered radiation is[21]
., [t—tm(z)—i"T”ZJJ

<EF [Z’t_g]EF *[Z,t +g]> oc eZp\/EkWZeiwmfe_Te T ,

(45)
where

O e G

2\ vy

The pulse duration is characterized by the rms width o;
given by [21]
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O-I :—2+—2
u 4oy,

It is seen that the pulse duration cannot be made smaller
than o, /|u|, which is also apparent from the phase space
geometry shown in Fig. 3. The last term in Eq. (47)
assures that the filtered pulse cannot be shorter than the

Fourier transform limit. The minimum pulse duration is
obtained for monochromator bandwidth

(47)

Om_ | 1M (48)
o\ 2]
This corresponds to a minimum rms pulse duration,
2
o, +|u
(0)in = ,/ wu2| | : (49)

The energy fluctuation after the monochrometer is
e (50
w Mg

where the number of modesis given by [21]
4070,

u2

M. = +1 . (51)

The coherence time of the monochromated pulseis
2 oy
Me
and the range of spectral coherenceis

B 2\/; Om
coh — M - .
CENTRAL LIMIT THEOREM
The central limit theorem [8] states that the distribution
P(V) of the normalized sum V =(r1+r2+---+rN)/\/W
of N independent random vectors approaches the normal

T

coh =

, (52)

Q

(53

law as N — oo . For simplicity consider <rj>:0; then as
N — oo,

P(V) = (27) ™/ ?(detM) /2 exp[— %VTM 1vj ., (59)
where V' =(V,,...Vi)is a K-dimensional row-vector

(the superscript T indicates transpose) and V the
corresponding column vector. The symmetric matrix M
is comprised of the second moments:

tr o thk
M=|: (55)
M1 Hk2 Mk
where
tic= (Vi) = [d"V (V) PV). (56)

M™ is the inverse of the matrix M. Note that when the
central limit theorem applies, the distribution is Gaussian
and hence is determined by the second moments. Under
these conditions, one need not compute al the higher

MOOAO01

moments to determine
simplification.

It is well-known that by choosing V = [A(t), A* (t)] one
can show [8-11] that the distribution of the normalized
intensity Q=1/(1) is given by the exponential
distribution P(Q)=exp(~Q) as noted in Eq. (4). It is
probably less widely known that by following Rice [8],
one can use the central limit theorem to determine the
probability distribution for intensity extrema. In this case,
for a dationary Gaussian process, one selects
V =[A(t), A* (t), A'(t), A*(t), A"(t), A**(t)], where prime
denotes derivative with respect to time. Introducing the
amplitude R(t) and phase ¢(t) via

the distribution—a great

AL (|0 ) = RO, (57)
define the normalized variables,
R _RII ¢l ¢II
=, N=——, V="o, u="—. 58
P 72 =3 7 - H="3 (58)
[0 w
Rice [8 has shown that the probability

p(p,n,v,y)dpdndvdydt of finding an extremum of

intensity in the interval dpdndvdudtis given by
plo. v, )=
%l’llfexp(—?»pz+2np—(77+v2p)2-p2ﬂ2] )

Maxima correspond to 77>0 and minima to 7<0.

More details of the derivation can be found in ref. [8,16].
Integrating over p,7,v, i, one finds that the number of

spikes per unit time is 1/(At) = o, /27 . Carrying out
integrations over specific subsets of variables, one can
derive useful distributions characterizing peak height,
width, and local phase derivative at the points of
maximum (or minimum) intensity [8,16]. Some of these
results have been compared to experiment at LEUTL
[22,23].

FROG MEASUREMENTSAT LEUTL

At LEUTL [22,23], frequency resolved optical gating
(FROG) [24] was used to characterize the tempora
evolution of the chaotic SASE output, and the
experimental results were found to be in agreement with
the predictions of analytic theory as well as numerical
simulation.

As illustrated in Fig. 4, the FEL output intensity as a
function of time exhibits spiking. The width of the
intensity spikes is characterized by the coherence time.
We note that the phase change is small near the intensity
maxima but can be larger near the intensity minima. The
rapid phase variation at the minima is closely related to
the loss of temporal coherence between spikes.
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Figure 4. (a) Typical raw FROG data and the retrieved field intensity (red, solid) and phase (blue, dashed) as a function
of time (b) and wavelength (c) of the SASE output. Seeref. [22].
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Figure 5: Distribution of (a) the spike width ot and (b) the peak-to-peak spacing At between the intensity spikes
normalized to the average spike width <5 t> , phase derivative at the intensity maxima (c) and minima (d) normalized to
the rms SASE FEL bandwidth. Experimental data (symbols), theoretical calculation (solid line) and simulation results

(dashed lines) are all presented when possible. Note different horizontal scales for (¢) and (d). See ref. [22].

Each FROG image and its retrieval shows a full
characterization of the pulse, including the field phase
and amplitude. Study of the shot-to-shot variation of
multiple pulses provides the information on the statistics
of the chaotic optical field.

Let us consider the time domain intensity spikes. We let
J t denote the rms spike width and At the peak-to-peak
spike separation. In Figs. 5 (@) and (b), we show the
probability distributions of the normalized rms spike

width & =6t/(6t) and the normalized spacing between
the intensity maxima ¢ = At/(5t). For the ensemble of

the pulses measured, (6t)=52fs is the average value of
the rms spike width. In Fig. 5 a, the distribution of the
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spike widths has a peak at a value dightly smaller than
the average. It has a long tail extending to larger spike
width and an abrupt drop at smaller spike width. The
distribution in Fig. 5b for the spike spacing peaks at about
At/(6t) = 3.0, and its average is 3.25, in reasonable

agreement with theory for a totally chaotic optical field,

(At oty =W2r 1, )ilN20, )= 247 =35.
Also shown in Figs. 5 (@) and (b), are the results of the
numerical simulation (dashed lines) and analytic theory
[16] solid lines.

Intuitively, since an individua intensity spike
corresponds to a coherent region, the phase within the
spike is expected to be correlated. On the other hand, due
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to the lack of communication between different coherence
regions, there can be a phase jJump in the transition region
between two spikes, as illustrated in Fig. 4. This phase
behavior was quantified by measuring the time derivative
of the phase (¢') of the dowly varying envelope at the

intensity maxima and minima. The measured distributions
(symbols) are presented in Figs. 5 (¢) and (d), which show
that indeed the phase drift rate is small at the intensity
maxima but may be much larger at the intensity minima.
Also in Figs. 5 (c) and (d) are the results of simulation
(dashed lines). Both simulation and the experiment data
are seen to be in good agreement with the theoretical
distribution (solid curves) derived in [16].

Since the distribution of phase drift rate is symmetric
with respect to zero, we only show the positive half of the
distribution. Of interest is the observed off-zero
maximum of the distribution for the phase drift at the
intensity minima, which implies there is a most probable
decoherence rate between the coherence regions.

In Fig. 6ais plotted the probability distribution [23] of
the normalized rms time-bandwidth product (tbwp) of the
SASE pulses. The distribution averageis 1.8. In Fig. 6b,
the distribution of the SASE pulse energy is plotted and
compared with a gamma distribution with M=1.8. The
deviation of the measured distribution from the expected
form is believed to be due to experimental limitations
described in ref. [23]. The data of ref. [23] showed that
the pulses with the highest energy had the lowest tbwp.

10F° ﬁl T
i a
B (a)
¥ sl 1% | &
24 T
3 - ]l a
- : ‘b' k-]
0.0 E:I. ! :'M!
0 1 2 3 4 5
t=tbwpl0.5 n=Wi<W>

Figure 6: Probability distribution of (a) the normalized
rms time-bandwidth product, tbwp/0.5=20,0,, where

0.5 is the minimum possible value; and (b) the pulse
energy. Experiment (symbols); simulation (dashed
curves); theory (solid curves). Seeref. [23].

CONCLUDING REMARKS

In this paper, we have considered the linear regime
before saturation. In the nonlinear saturation regime,
SASE is no longer a Gaussian process and analytic
treatment is very difficult. A valuable numerical
simulation analysis of the statistical behavior in the
nonlinear regime can be found in ref. [10,11].

In the SASE FEL, tempora coherence is limited by the
short coherence time. Using a laser seed, one can
generate a Fourier transform limited pulse. In thisregard,
high-gain  harmonic-generation has been studied
experimentally in refs. [25,26]. In the HGHG FEL, the
SASE provides a noise limitation [27,28].
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