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Abstract 
We review the statistical description of the chaotic time 
evolution of the radiation from a self-amplified 
spontaneous-emission free-electron laser in the linear 
region before saturation.   

INTRODUCTION 
   A high-gain, self-amplified spontaneous-emission 
(SASE) free-electron laser (FEL) [1, 2], based on modern 
beam technology, has the advantage of operating without 
a resonator and hence is capable of generating coherent 
radiation with wavelength down to the x-ray region. The 
LCLS at SLAC has recently achieved high gain and 
saturation at 1.5 Ǻ [3].  A review of SASE theory can be 
found in ref. [4]. 
   The gain in an FEL is based on the constructive growth 
of a microbunching instability in an electron beam, which 
grows as the result of an interaction between the electron 
beam and the electromagnetic wave it emits as it traverses 
the magnetic field of the undulator. The instability 
modulates the electron density on the scale of the 
radiation wavelength resulting in coherent radiation. 
Provided that the instability is strong enough, the 
radiation grows exponentially before reaching saturation. 
The wavelength of an FEL is determined by the resonance 
frequency 
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Here γ  is the relativistic factor of the beam, and λw and 

wa  are respectively the undulator period and rms field 

strength parameter.   
     The SASE FEL starts up from the shot noise in the 
electron beam [5-7].  The temporal behavior of the system 
is that of a narrow-band amplifier with a broadband 
Poisson seed.  Before saturation the output is a Gaussian 
random process and the radiated field is chaotic, quasi-
monochromatic, polarized light.  Near saturation, the 
transverse behavior of the output is dominated by an 
intense, single spatial mode. Ignoring the transverse 
dependence, the radiated electric field can be expressed in 
the form         
                 ( ) ( ) ( )tiziktzAtzE rr ω−= exp,, ,                 (2)                                 

where z represents the location along the undulator at 
which the SASE is observed and t represents the temporal 
position in the radiation pulse.  The SASE field before 
saturation is the superposition of many electromagnetic 
wave packets emitted from randomly distributed, 
individual electrons.  Within the classical,   one-
dimensional   theory, the  slowly  varying envelope can be 
approximated by 
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where eN is the total number of electrons in the bunch, 

( )zA0  contains the exponential growth factor, jt  is the 

random arrival time of the thj  electron at the undulator 

entrance, and ⎟
⎠
⎞

⎜
⎝
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2
/ω .  The wave packet 

width ( )ωσσ 3/1= , where zkwr /33 ρωσ ω =  is 

the SASE bandwidth [5,6] and ρ  the FEL Pierce 

parameter [2].  

STATISTICAL DESCRIPTION 
Overview 

To describe the shot noise, one considers the arrival 
time of the individual electrons at the undulator entrance 
to be independent random variables, and determines the 
statistical properties of the output radiation by averaging 
over the stochastic ensemble of arrival times.  In the 
linear regime before saturation, the Central Limit 
Theorem implies that the probability distribution for the 

spectral intensity ( )ω
~
I , or the time-domain intensity ( )tI , 

is the negative exponential distribution [8-11] 
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and the intensity fluctuation is 100%.  The bracket 
indicates an ensemble average over the arrival times. 

     The output intensity as a function of time exhibits 
spiking [12] (see Fig. 1a), and the width of the intensity 
peaks is characterized by the coherence time [8-16], 

ωσπ /=cohT , where ωσ  is the SASE gain bandwidth.  

The spectral intensity also exhibits spikes (Fig. 1b), and 
the width of the spectral peaks is inversely proportional to 
the pulse duration. 

At a fixed position z along the undulator, consider the 
energy in a single SASE pulse,   

                        ∫∝ dtztEzW
2
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For z fixed, one can think of  dividing the pulse into M 
statistically independent time-intervals of width Tcoh .  
The energy fluctuation within a single coherent region is 
100%, but the fluctuation WW /σ  of the energy in the 

entire pulse is reduced [8-11,14], 
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       (a)                                                          (b)                                                               (c) 

Figure 1:  (a) Intensity spiking in the time-domain.  Width of peaks is characterized by the coherence time cohT  

(b) Intensity spiking in the frequency-domain.  Width of spectral peaks cohΩ   inversely proportional to pulse length.   

(c) Average spectrum of many SASE pulses.  Spectral width pΩ  inversely proportional to the coherence time. 

 
                                                                    
The energy per pulse is described approximately by the 
gamma distribution [8-11],         
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For an unchirped Gaussian pulse of rms duration 

coht T>σ , Table 1 provides useful guidance [16]: 

 
Table 1:  Approximate description of SASE statistics.     
Number of modes  ωσσ tM 2≅  

Pulse duration 
tpT σπ2≡  

Coherence time 
ωσπ // ≅≡ MTT pcoh  

Temporal spike rms width πδ 2/cohTt ≅  

Temporal spike separation 
ωσπ /2≅Δ t  

Spectral width 
ωσπ2≡Ω p  

Range spectral coherence 
tpcoh M σπ // ≅Ω≡Ω  

Frequency rms spike width πδω 2/cohΩ≅  

Frequency spike separation 
tσπω /2≅Δ  

   
Mathematical Formalism 

The mathematical formalism presented here is valid for 
a general random process E(t) with ( ) 0=tE .  It need be 

neither stationary nor Gaussian.  The Wigner function 
[17], defined by 
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has many of the properties of a phase space density, 
although it can take negative values.  Integrating the 
Wigner function over frequency, we obtain the average 
instantaneous intensity, 

                   ( ) ( )ω
π
ω

,
2

2
tW

d
tE ∫=                            (9) 

and integrating over time, the average spectral intensity 
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   The number of temporal modes M in a radiation pulse 
should be equal to the ratio of the area of the time-
frequency phase space it occupies divided by the 
minimum required phase space area.  With this in mind, 
the number of modes M can be expressed in terms of the 
Wigner function via, 
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Working in the time domain, Eq. (11) can be written in 
the form [9] 
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where the integrated intensity W is given by 
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The Schwartz inequality implies 1≥M .   
   Let us define the radiation pulse duration Tp by 
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and define the coherence time Tcoh by 
                               MTT pcoh /≡ .                               (15) 

It follows from (12), (14) and (15) that  
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   Working in the frequency domain, we can express the 
number of modes as, 
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We define the spectral width pΩ  of the pulse by 
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and the range of spectral coherence by  
                         Mpcoh /Ω≡Ω .                              (19) 

Then the range of spectral coherence is given by 
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   The fluctuation of the integrated intensity Wσ  is 
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For a Gaussian random process with zero mean [8-11],  
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In this special case, valid for SASE in the linear regime 
before saturation, it follows from Eqs. (11,21,22) that 
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Simplified Model of SASE Pulse 
   A full treatment of SASE from a Gaussian bunch would 
take into account the dependence of the FEL gain on the 
electron density profile, which results in a dependence of 
the wave packet duration σ  [Eq. (3)] on the temporal 
position in the pulse.  Here, we shall ignore this 
dependence and consider constant σ . 
   We suppose the electron bunch to have a Gaussian 
average density profile                            

                 ( ) ( )22 2/exp
2

1
b

b
b ttw σ
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−= ,               (24)                                 

and consider the time dependence of the SASE amplitude 
(2) observed at a fixed position z.  Suppressing the 
dependence on z, we write the complex, slowly varying 
amplitude in the linear region before saturation as                      
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where κχ i+= 1  with 3/1=κ .  The times jt  are 

randomly distributed according to the Gaussian 

distribution ( )twb  of Eq. (24).  We assume that 

1& >>σωσω rbr , so ( ) 0≈tA .  Averaging over the 

stochastic ensemble, we find the correlation function [16] 
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and the Wigner function [16], 
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Figure 2: Region of phase space occupied by 
radiation. rωωω −=Δ  .  Area is 02 ωσσπ t . 

 
Integrating the Wigner function over frequency we obtain 
the average instantaneous intensity, 
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and integrating over time, the average spectral intensity                            
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It is seen that the rms radiation bandwidth is given by                
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In ref. [16], the results in Table 2 are derived. 
 

    Table 2: Statistical properties in model. 
Number of modes  
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Pulse energy fluctuation MWW /1/ =σ  
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FREQUENCY CHIRPED SASE 
Characterization 
   Consider an electron beam passing through an undulator 
having period ww k/2πλ = and rms field strength 

parameter wa .  The thj electron has energy jγ  (in units 

of its rest mass), average longitudinal velocity 
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at time jt .  We suppose the electron beam energy to have 

a linear chirp [18-21] α  specified by 
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where bT  is the full temporal width of the uniform 

density electron pulse and jct  is the longitudinal 

deviation from the beam center 0=jt .  From Eq. (1), we 

see that the energy chirp gives rise to a linear frequency 
chirp   
                                 jj ut+= 0ωω ,                            (33)                                     

where bTu /2 0αω= . 

 
In the exponential growth regime before saturation, the 

SASE electric field has the form                      
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where the green’s function can be approximated by [21],          
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The wave number of radiation from the thj  electron is                 
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The complex parameter b  is defined by 
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   To analyze the statistical properties of the chirped 
SASE output, we consider the arrival times jt to be 

random variables and average over the uniform stochastic 
ensemble. The time correlation function is [21]   
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We find the coherence time 

                               ωσπ /=cohT ,                             (39) 

and the number of modes in the chirped radiation pulse                             

                πσ ω // bcohb TTTM =≡ ,                    (40) 

are independent of the energy chirp. 
         The frequency correlation function is [21] 
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and the range of spectral coherence 

                      cohbcoh TuMTu ==Ω / .                     (42)   

In the absence of the frequency chirp, bcoh T/2π=Ω .  In 

this paper, when we consider a chirped electron beam, we 
assume that bcoh TTu /2π>> .   

   The Wigner function is given by [21] 
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Pulse Slicing Using Monochromator 
   One can use a monochromator to select a short portion 
of the frequency chirped radiation pulse [19,20].  In order 
to investigate the properties of such filtered output, let us 
assume that the electric field ),( ztEF  after the 

monochromator has the form 
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where ( )zE ,
~

ω  is the Fourier component of the electric 

field before the filter.  The time-correlation function of 
the filtered radiation is [21] 
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   The pulse duration is characterized by the rms width tσ  

given by [21] 

 

Figure 3: Time-frequency phase space for chirped 
radiation. 
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It is seen that the pulse duration cannot be made smaller 
than u/ωσ , which is also apparent from the phase space 

geometry shown in Fig. 3.  The last term in Eq. (47) 
assures that the filtered pulse cannot be shorter than the 
Fourier transform limit.  The minimum pulse duration is 
obtained for monochromator bandwidth 

                                  
2
00 2ωω
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This corresponds to a minimum rms pulse duration, 
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   The energy fluctuation after the monochrometer is 
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where the number of modes is given by [21] 
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The coherence time of the monochromated pulse is  
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and the range of spectral coherence is 
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CENTRAL LIMIT THEOREM 
   The central limit theorem [8] states that the distribution 

P(V) of the normalized sum NrrrV N /)( 21 +++= L  

of N independent random vectors approaches the normal 

law as ∞→N . For simplicity consider 0=jr ; then as 

∞→N ,                                      
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(the superscript T indicates transpose) and V the 
corresponding column vector.  The symmetric matrix M 
is comprised of the second moments: 
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 M-1 is the inverse of the matrix M.  Note that when the 
central limit theorem applies, the distribution is Gaussian 
and hence is determined by the second moments.  Under 
these conditions, one need not compute all the higher 

moments to determine the distribution—a great 
simplification. 
   It is well-known that by choosing ( ) ( )[ ]tAtAV *,=  one 

can show [8-11] that the distribution of the normalized 
intensity IIQ /=  is given by the exponential 

distribution ( ) ( )QQP −= exp  as noted in Eq. (4).  It is 

probably less widely known that by following Rice [8], 
one can use the central limit theorem to determine the 
probability distribution for intensity extrema. In this case, 
for a stationary Gaussian process, one selects 

( ) ( ) ( ) ( ) ( ) ( )[ ]tAtAtAtAtAtAV '*','','*,',*,= , where prime 

denotes derivative with respect to time. Introducing the 
amplitude ( )tR  and phase ( )tφ  via 
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Rice [8] has shown that the probability 

( ) dtddddp μνηρμνηρ ,,,  of finding an extremum of 

intensity in the interval dtdddd μνηρ is given by    
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Maxima correspond to 0>η  and minima to 0<η .  

More details of the derivation can be found in ref. [8,16]. 
Integrating over ,,,, μνηρ  one finds that the number of 

spikes per unit time is πσ ω 2//1 ≅Δt .  Carrying out 

integrations over specific subsets of variables, one can 
derive useful distributions characterizing peak height, 
width, and local phase derivative at the points of 
maximum (or minimum) intensity [8,16].  Some of these 
results have been compared to experiment at LEUTL 
[22,23]. 

FROG MEASUREMENTS AT LEUTL 
At LEUTL [22,23], frequency resolved optical gating 

(FROG) [24] was used to characterize the temporal 
evolution of the chaotic SASE output, and the 
experimental results were found to be in agreement with 
the predictions of analytic theory as well as numerical 
simulation.     
   As illustrated in Fig. 4, the FEL output intensity as a 
function of time exhibits spiking.  The width of the 
intensity spikes is characterized by the coherence time.  
We note that the phase change is small near the intensity 
maxima but can be larger near the intensity minima.  The 
rapid phase variation at the minima is closely related to 
the loss of temporal coherence between spikes.  
   

Proceedings of FEL2009, Liverpool, UK MOOA01

FEL Prize

5



  

0.0

0.5

1.0

-0.4 0.0 0.4 525 530 535
0π

1π

2π

3π

-0.4 0.0 0.4
268

266

264 (a)

 λ
 (n

m
)

 τ (ps)

 

(b)

 I 
(a

. u
. )

 t (ps)

 

 λ (nm)

 

(c)

 
Figure 4:  (a) Typical raw FROG data and the retrieved field intensity (red, solid) and phase (blue, dashed) as a function 
of time (b) and wavelength (c) of the SASE output. See ref. [22]. 
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Each FROG image and its retrieval shows a full 
characterization  of  the  pulse,  including  the  field phase 
and amplitude. Study of the shot-to-shot variation of 
multiple pulses provides the information on the statistics 
of the chaotic optical field.  
   Let us consider the time domain intensity spikes. We let 

tδ  denote the rms spike width and tΔ  the peak-to-peak 

spike separation.  In Figs. 5 (a) and (b), we show the 
probability distributions of the normalized rms spike 
width tt δδξ /=  and the normalized spacing between 

the intensity maxima tt δζ /Δ= . For the ensemble of 

the pulses measured, fst 52=δ  is the average value of 

the rms spike width. In Fig. 5 a, the distribution of the  

spike widths has a peak at a value slightly smaller than 
the average. It has a long tail extending to larger spike 
width and an abrupt drop at smaller spike width.  The 
distribution in Fig. 5b for the spike spacing peaks at about   

0.3/ =Δ tt δ , and its average is 3.25, in reasonable 

agreement with theory for a totally chaotic optical field, 

( ) ( ) 5.322/1//2/ ≅==Δ πσσπδ ωωtt . 

Also shown in Figs. 5 (a) and (b), are the results of the 
numerical simulation (dashed lines) and analytic theory 
[16] solid lines.  
   Intuitively, since an individual intensity spike 
corresponds to a coherent region, the phase within the 
spike is expected to be correlated. On the other hand, due 
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to the lack of communication between different coherence 
regions, there can be a phase jump in the transition region 
between two spikes, as illustrated in Fig. 4. This phase 
behavior was quantified by measuring the time derivative 
of the phase ( 'φ ) of the slowly varying envelope at the 

intensity maxima and minima. The measured distributions 
(symbols) are presented in Figs. 5 (c) and (d), which show 
that indeed the phase drift rate is small at the intensity 
maxima but may be much larger at the intensity minima.  
Also in Figs. 5 (c) and (d) are the results of simulation 
(dashed lines). Both simulation and the experiment data 
are seen to be in good agreement with the theoretical 
distribution (solid curves) derived in [16].   
   Since the distribution of phase drift rate is symmetric 
with respect to zero, we only show the positive half of the 
distribution. Of interest is the observed off-zero 
maximum of the distribution for the phase drift at the 
intensity minima, which implies there is a most probable 
decoherence rate between the coherence regions. 
   In Fig. 6a is plotted the probability distribution [23] of 
the normalized rms time-bandwidth product (tbwp) of the 
SASE pulses.  The distribution average is 1.8.  In Fig. 6b, 
the distribution of the SASE pulse energy is plotted and 
compared with a gamma distribution with M=1.8.  The 
deviation of the measured distribution from the expected 
form is believed to be due to experimental limitations 
described in ref. [23].  The data of ref. [23] showed that 
the pulses with the highest energy had the lowest tbwp. 

  

CONCLUDING REMARKS 
In this paper, we have considered the linear regime 

before saturation.  In the nonlinear saturation regime, 
SASE is no longer a Gaussian process and analytic 
treatment is very difficult.  A valuable numerical 
simulation analysis of the statistical behavior in the 
nonlinear regime can be found in ref. [10,11]. 
In the SASE FEL, temporal coherence is limited by the 

short coherence time.  Using a laser seed, one can 
generate a Fourier transform limited pulse.  In this regard, 
high-gain harmonic-generation has been studied 
experimentally in refs. [25,26].  In the HGHG FEL, the 
SASE provides a noise limitation [27,28]. 
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Figure 6: Probability distribution of (a) the normalized 
rms time-bandwidth product, tbwp/0.5= ωσσ t2 , where 

o.5 is the minimum possible value; and (b) the pulse 
energy.  Experiment (symbols); simulation (dashed 
curves); theory (solid curves).   See ref. [23]. 
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