A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hajdu, J.

Paper Title Page
FROB01 Achieving Microfocus of the 13.5-nm FLASH Beam for Exploring Matter Under Extreme Conditions 784
 
  • A.J. Nelson, R.W. Lee
    LLNL, Livermore, California
  • J. Andreasson, J. Hajdu, N. Timneanu
    Uppsala University, Biomedical Centre, Uppsala
  • S. Bajt, H. Chapman, R.R. Fäustlin, S. Toleikis
    DESY, Hamburg
  • J. Chalupsky, V. Hajkova, L. Juha
    Czech Republic Academy of Sciences, Institute of Physics, Prague
  • T. Dzelzainis, D. Riley
    Queen's University of Belfast, Belfast, Northern Ireland
  • M. Fajardo
    GoLP, Lisbon
  • M. Jurek, R. Sobierajski
    IP PAS, Warsaw
  • A.R. Khorsand
    FOM Rijnhuizen, Nieuwegein
  • J. Krzywinski
    SLAC, Menlo Park, California
  • B. Nagler
    STFC/RAL, Chilton, Didcot, Oxon
  • K. Saksl
    IMR SAS, Kosice
  • T. Tschentscher
    European X-ray Free Electron Laser Project Team, c/o DESY, Hamburg
  • S.M. Vinko, J.S. Wark, T.J. Whitcher
    University of Oxford, Clarendon Laboratory, Oxford
 
 

We have focused a beam (BL3) of FLASH (Free-electron LASer in Hamburg: 13.5 nm, 15fs, 10μJ, 5Hz) using a fine polished off-axis parabola having a focal length of 270 mm and coated with a Mo/Si-ML giving a reflectivity of 67% at 13.5 nm. The OAP was mounted and aligned with a picomotor control six-axis gimbel. Beam imprints on PMMA were used to measure focus and the focused beam was used to create isochoric heating of various slab targets. Results show the focal spot has a diameter of <1μm producing intensities greater than 1016 Wcm−2. Observations were correlated with simulations of best focus to provide further relevant information. This focused XUV laser beam now allows us to begin exploring matter under extreme conditions. Future experimental efforts at ’4th generation’ light sources will be outlined.

 

slides icon

Slides