

ECRIS'14 – Nizhniy Novgorod

T. Thuillier, J. Angot, J. Jacob, T.Lamy and P. Sole

(A SIMPLE) INVESTIGATION ON THE ORIGIN OF HIGH ENERGY X-RAYS OBSERVED IN 3RD GEN. ECRIS

Thomas Thuillier LPSC 53 rue des Martyrs 38026 Grenoble cedex France e-mail: thuillier@lpsc.in2p3.fr

OUTLINE

- VENUS Hot x-ray data revisitation
- Possible origin for hot x-rays in ECRIS
- A simple model to investigate hot electrons origin
- Model testing with VENUS data
- Conclusion

Experimental x-ray spectrum data from VENUS

T. Thuillier, ECRIS'14, Nizhniy Novgorod, August 24-27 2014

X-RAY hot tail spectrum fit

• Boltzmann energy distribution with a temperature *kT* :

(Fit estimated from the paper plot)

- Hot electron tail: $\frac{dN}{dE} = N_0 e^{-\frac{E}{kT}}$
- 18 GHz: Shallow $kT \sim 91.2 \pm 2 \ keV$ Steep $kT \sim 47.7 \pm 2 \ keV$
- 28 GHz: Shallow $kT \sim 139.5 \pm 2 \ keV$ Steep $kT \sim 72.7 \pm 2 \ keV$
- Axial Magnetic Mirror ratio:
 - Steep : R_{inj}=7.44 R_{ext}=4.9 R_{rad}=4.47
 - Shallow: *R_{inj}=4.85 R_{ext}=3.28 R_{rad}=3*

The hot x-ray tail temperature scales with... f_{ECR}

- Comparison of the x-ray tail plots
 - Plots normalized → same max. intensity
 - Consider that each hot electron undergoes an energy boost when f_{ECR} : $18 \rightarrow 28 \ GHz$
 - For a given x-ray flux intensity: $e^{-\frac{E_2}{kT_2}} = e^{-\frac{E_1}{kT_1}} => E_2 = E_1 \frac{kT_2}{kT_1}$
- Shallow gradient $18 \rightarrow 28$:

$$\frac{kT_2}{kT_1} = \frac{72.7}{47.7} = 1.52 \pm 0.11$$

• Steep Gradient $18 \rightarrow 28$:

$$\frac{kT_2}{kT_1} = \frac{139.5}{91.2} = 1.53 \pm 0.06$$

- Amazingly: $\frac{28}{18} = 1.55$...
- The x-ray spectrum temperature scales with the ECR frequency...

The hot x-ray tail temperature scales with... f_{FCR}

- Comparison of the x-ray tail plots
 - Plots normalized \rightarrow same max. intensity
 - Consider that each hot electron undergoes an energy boost when f_{ECR} : 18 \rightarrow 28 GHz
 - For a given x-ray flux intensity: $e^{-\frac{E_2}{kT_2}} = e^{-\frac{E_1}{kT_1}} => E_2 = E_1 \frac{kT_2}{kT_1}$
- Shallow gradient $18 \rightarrow 28$:

$$\frac{kT_2}{kT_1} = \frac{72.7}{47.7} = 1.52 \pm 0.11$$

• Steep Gradient $18 \rightarrow 28$:

 $\frac{kT_2}{kT_1} = \frac{139.5}{91.2} = 1.53 \pm 0.06$

- Amazingly: $\frac{28}{18} = 1.55$...
- The x-ray spectrum temperature scales with the ECR frequency...

Grensbie

Magnetic field influence on the x-ray temperature

• Temperature ratio for shallow/steep gradient at $f_{ECR} = Const$.

• 18 GHz:
$$\frac{kT_{shallow}}{kT_{steep}} = \frac{91.2}{47.7} = 1.91 \pm 0.0x$$

• 28 GHz:
$$\frac{kT_{shallow}}{kT_{steep}} = \frac{139.5}{72.7} = 1.92 \pm 0.0x$$
 Not a coïncidence... \rightarrow Magnetic origine

- The axial magnetic gradient effect on kT (1.91) is larger than the frequency effect presented earlier (1.51) ...
- Can we explain all of this?
 - Let's dig this further...

A serious candidate for the hotter 28 GHz x-ray tail: RF electron scattering

• Since the 60's RF scattering is considered to be the dominant term to deconfine hot electrons:

•
$$\frac{d\gamma mv}{dt} = -e\vec{v} \times \vec{B} - e\vec{E_{RF}} - e\vec{v} \times \vec{B_{RF}}$$

•
$$B_{RF} \sim \frac{E_{RF}}{v_{\varphi}}$$

- Models using whistler wave absorption predict that:
 - v_{φ} increases with f_{ECR}
 - Low RF frequency → large RF scattering for hot electrons → limited hot x-ray tail temperature
 - High RF frequency \rightarrow low RF scattering \rightarrow high hot x-ray tail temperature
- Experimentalist frustration: v_{φ} is not a physical observable...

T. Thuillier, ECRIS'14, Nizhniy Novgorod, August 24-27 2014

A Possible Origin of the high energy x-ray tail

- Spatial Gyrac Effect (Golovanivsky's auto-resonance in a magnetic gradient) (see The Bible: Geller Book)
 - $\vec{B}(z) = (B_0 + \frac{\partial B}{\partial z}z)\vec{z}$
 - $\omega_0 = \frac{eB_0}{m} = \omega_{RF}$
 - $\frac{d\vec{p}}{dt} = -\frac{\omega_0}{\gamma}\vec{p}\times\vec{z} e\overrightarrow{E_{RF}}$
- Provided an appropriate initial v_{\parallel} , the electron can become relativistic in a single pass through the B gradient

$$\omega_{RF} = \frac{\omega_0}{\gamma}$$

$$\omega_{RF} = \frac{eB}{\gamma} = \text{constant.}$$

$$W_{e\perp} = m_0 c^2 \left[\frac{B(t)}{B_0} - 1\right] = 0.51 \left[\frac{B(t)}{B_0} - 1\right] \text{MeV.}$$

$$W_{e\perp} = m_0 c^2 \left[\frac{B(t)}{B_0} - 1\right] = 0.51 \left[\frac{B(t)}{B_0} - 1\right] \text{MeV.}$$

$$W_{e\perp} = m_0 c^2 \left[\frac{B(t)}{B_0} - 1\right] = 0.51 \left[\frac{B(t)}{B_0} - 1\right] \text{MeV.}$$

$$W_{e\perp} = m_0 c^2 \left[\frac{B(t)}{B_0} - 1\right] = 0.51 \left[\frac{B(t)}{B_0} - 1\right] \text{MeV.}$$

A high electric field favors this scenario

A simple model for hot electron energy

- ϵ = Mean ECR boost when the e^- crosses the ECR zone
- N Number of e^- passage through the ECR
- The electron energy can increase by two means:
 - A higher electronic confinement :

 $\epsilon = Const.$, $W_{\perp} \uparrow because N \uparrow with f_{ECR}$

• A higher ECR gain per passage :

N = Const., $W_{\perp} \uparrow because \in \uparrow with f_{ECR}$?

A simple model for hot electron energy

• ϵ = Mean ECR boost when the e^- crosses the ECR zone

- N Number of e^- passage through the ECR
- The electron energy can increase by two means:
 - A higher electronic confinement :

 $\epsilon = Const.$, $W_{\perp} \uparrow because \ N \uparrow with \ f_{\rm ECR}$

• A higher ECR gain per passage :

N = Const., $W_{\perp} \uparrow because \in \uparrow with f_{ECR}$?

A simple model for hot electron energy

• ϵ = Mean ECR boost when the e^- crosses the ECR zone

- N Number of e^- passage through the ECR
- The electron energy can increase by two means:
 - A higher electronic confinement :

 $\epsilon = Const.$, $W_{\perp} \uparrow because \ N \uparrow with \ f_{ECR}$

• A higher ECR gain per passage :

N = Const., $W_{\perp} \uparrow because \ \epsilon \uparrow with f_{ECR}$?

Present

Work

hypothesis

A simple model for hot electron energy

• ϵ = Mean ECR boost when the e^{-} crosses the ECR zone

- N Number of e^- passage through the ECR
- The electron energy can increase by two means:
 - A higher electronic confinement :

 $\epsilon = Const.$, $W_{\perp} \uparrow because \ N \uparrow with \ f_{\rm ECR}$

• A higher ECR gain per passage :

N = Const., $W_{\perp} \uparrow because \in \uparrow with f_{ECR}$?

Simple model for Energy gain ϵ through the ECR zone (part 1)

 $\epsilon \sim \frac{q^2 E_{RF}^2 t^2}{2m}$

• estimate of the Electron energy kick through the ECR zone:

- Time through ECR zone : $t = \frac{\Delta l}{v_{11}}$
- Local Magnetic gradient along field line :

• What is ΔB ?

ECR zone Magnetic Thickness ΔB

• estimated by studying : $\Delta \omega = \omega_{ec} - \omega_{RF}$

•
$$\frac{\Delta B}{B} = \frac{\Delta \omega}{\omega}$$

- Solve : $\frac{d\vec{v}}{dt} = \frac{q\vec{E}_{RF}}{m}\cos\omega_{RF}t + \vec{\omega}_{ec} \times \vec{v}$, $\forall\omega_{RF}$
- Sweep: $\Delta \omega$
- get $E_{\max} = f(\frac{\Delta\omega}{\omega})$
- Plot $T_{\max} = f(\Delta \omega)$
- Get a resonance width $\frac{\Delta\omega}{\omega}$

ECR zone Magnetic Thickness ΔB

• estimated by studying : $\Delta \omega = \omega_{ec} - \omega_{RF}$

•
$$\frac{\Delta B}{B} = \frac{\Delta \omega}{\omega}$$

• Solve :
$$\frac{d\vec{v}}{dt} = \frac{q\vec{E}_{RF}}{m} \cos \omega_{RF} t + \vec{\omega}_{ec} \times \vec{v}$$
, $\forall \omega_{RF}$

- Sweep: $\Delta \omega$
- get $E_{\max} = f(\frac{\Delta\omega}{\omega})$
- Plot $T_{\max} = f(\Delta \omega)$
- Get a resonance width $\frac{\Delta\omega}{\omega}$

ECR peak width dependance with RF frequency

- The relative ECR peak width $\frac{\Delta\omega}{\omega}$
 - ...decreases with f_{ecr}
 - The energy ocillation period with $\Delta \omega$ is $\Delta T = \frac{1}{\Delta f}$
 - Time of E_{max} reached at: $t_{max} = \frac{\Delta T}{2} = \frac{1}{2\Delta f}$

•
$$\frac{\Delta f}{f_{ecr}} = \text{Const.} \Rightarrow t_{max} = \frac{\text{Const.}}{f_{ecr}}$$

$$\Rightarrow t_{max}(28 \text{ GHz}) = \frac{18}{28} t_{max}(18 \text{ GHz})$$

$$\Rightarrow E(t_{max}(28)) = \left(\frac{18}{28}\right)^2 E(t_{max}(18))$$

ECR peak width parameters

 The ECR peak width is proportional to the electric field intensity

ECR peak width parameters

 The ECR peak width is proportional to the electric field intensity

ECR peak width parameters

 The ECR peak width is proportional to the electric field intensity

Simple model energy kick ϵ through the ECR zone (part 2/2)

• The energy boost estimate for an electron passing through the ECR zone is now:

$$\epsilon \sim \frac{q^2 E_{RF}^2}{2m v_{||}^2} \frac{\Delta B^2}{G^2} \propto \frac{q^2 E_{RF}^4}{2m v_{||}^2 G^2}$$

Grene bie

Simple model for RF power absorption in the ECR zone

• RF power absorbed in the ECR zone:

$$P_{RF \to ECR} \sim V_{ECR} \times E_{RF}^{2} = S_{ECR} \times \Delta l \times E_{RF}^{2}$$

- S_{ECR} ECR zone surface
- Δl ECR zone thickness
- Consequence: if V_{ECR} changes, then the number of passage of the RF wave in the cavity changes \Rightarrow RF cavity Q factor should change
 - $V_{ECR} \downarrow \Rightarrow E_{RF} \uparrow$
 - $V_{ECR} \uparrow \Rightarrow E_{RF} \downarrow$
- If we neglect wall dissipation and reflected power :
 - if $P_{RF \to ECR} \to \frac{P_{RF \to ECR}}{a} \Rightarrow then E_{RF}^2 \to aE_{RF}^2^2$
- Higher loss to the wall are expected and higher RF power needed to sustain the RF power absorbed in the ECR

3D magnetic simulation of VENUS with Radia (ESRF)

- Experimental magnetic configurations simulated for 18/28 GHz and steep/shallow axial magnetic profile
 - ECR zone geometry calculated along with the local magnetic gradients

T. Thuillier, ECRIS'14, Nizhniy Novgorod, August 24-27 2014

3D magnetic simulation of VENUS with Radia (ESRF)

- Experimental magnetic configurations simulated for 18/28 GHz and steep/shallow axial magnetic profile
 - ECR zone geometry calculated along with the local magnetic gradients

ECR zone characteristics for 18/28 - Shallow/Steep magnetic gradient

Distribution of dSxB/gradient on the ECR zone

	ECR surface <i>(cm²)</i>	Length <i>(mm)</i>	Max Radius (mm)	Max Grad. (T/m)	Min Grad. <i>(T/m)</i>	Mean Grad. <i>(T/m)</i>
18 GHz steep	530.3	170.6	49.3	22.72	6.67	17.16
18 GHz shallow	389.8	134.4	44.23	17.0	5.1	12.5
28 GHz Steep	519.2	167.1	49.50	35.4	10.4	26.7
28 GHz shallow	382.8	132.8	44.34	26.5	8.0	19.5

Steep/Shallow gradient analysis

- Good agreement to explain the shallow/steep temperature ratio
 - Same ECR Volume \Rightarrow same $E_{RF} \Rightarrow$ possible comparison of data
- The hot electron temperature is directly explained by the difference of magnetic gradient on the ECR zone
- The effect of *e*⁻confinement time modification between steep/shallow gradient is negligible: *N*~*Const*.

Frequency effect

- The ECR volumes at $f_{ecr} = 18$ and 28 GHz do not match => Data More difficult to compare!
- $\frac{V_{ECR}(18)}{V_{ECR}(28)} \sim \frac{28}{18} \Rightarrow$ The E_{RF} in the cavity is different (higher Q for 28 GHz)
- We assume: $E_{RF}^{2}(28) \sim \frac{28}{18} E_{RF}^{2}(28)$ to compensate the lower ECR absorption at 28 GHz per passage

Summary and Conclusion (1/2)

• VENUS measurements revisitation shows:

- The hot x-ray temperature kT scales with f_{ecr}
 - Be Prepared to add extra cryocoolers for 4th Generation ECRIS cryostat!!!
- The x-ray temperature ratio between shallow/steep gradient is well reproduced by the simple model proposed

 \Rightarrow Reduction of x-ray hot tail according to $|G|^2$

Summary and Conclusion (2/2)

- Investigation done shows that the ECR zone magnetic thickness is a constant independent of f_{ecr}
- \Rightarrow assuming scaling law magnetic field: for a given S_{ecr} , The higher f_{ecr} , the lower the RF absorption in the ECR zone for a given E_{RF}
- The model developped cannot reproduce the fact that hot x-ray temperature tail experimentally scales with f_{ecr}
 - Model too simple
 - Electron RF scattering scenario reinforced
- But the model shows that the microwave absorption per passage decreases when f_{ecr} increases. Consequently, the electric field intensity increases in the plasma chamber (higher passage number, higher Q) which counter balance the effect.
- A consequence is that the loss to the wall should be higher at 24/28 GHz ⇒ more RF power is needed to get the same performance.

