

HIISI, New 18 GHz ECRIS for The JYFL Accelerator Laboratory

H. Koivisto¹, P. Heikkinen¹, **T. Kalvas**¹, K. Ranttila¹, O. Tarvainen¹, D. Xie², T. Thuillier³, G. Machicoane⁴

Department of Physics, University of Jyväskylä, Finland
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France
National Superconducting Cyclotron Laboratory, East Lansing, Michigan, USA

26 August, 2014

Contact: H. Koivisto <hannu.koivisto@jyu.fi> or T. Kalvas <taneli.kalvas@jyu.fi>

- Requirements for the new ion source
- Design goals for magnetic field
- Solenoid field
- Refridgerated hexapole and plasma chamber design
- Schedule

Academy of Finland granted funding for a new 18 GHz ECRIS HIISI (Heavy Ion Ion Source Injector). Source has to provide adequate ion beam intensities for the nuclear physics program and applications at the Accelerator Laboratory.

PARTICIPATION AND ADDRESS

- Nuclear physics: ×10 intensity at medium charge states (Ar⁸⁺, Xe²⁶⁺, energy > 5 MeV/u)
- Radiation effects facility: Ion beam cocktail energy increased from current 9.3 MeV/u to 15 MeV/u (Xe⁴⁴⁺ required)
- SUSI can meet the requirements for example
- Construction costs of fully superconducting ECRIS greatly exceeds available funding

Magnetic field of SUSI at 18 GHz operation mode

UNIVERSITY OF JYVÄSKYLÄ

The Constitution of the local division of the local division of the local division of the local division of the

Element	Charge	l (euA)	Power (kW)	Brad (T)	Binj (T)	Bmin (T)	Bext (T)	gradB Inj (T/m)	gradB Ext (T/m)	Plasma (mm)
129Xe	26	504	3.8	1.04	2.63	0.48	1.29	5.1	5.1	119
129Xe	27	385	3.9	1.08	2.68	0.51	1.29	4.7	4.9	112
129Xe	35	16	3.2	1.36	2.82	0.46	1.56	6.6	5.9	115
40Ar	11	780	3.6	1.06	2.52	0.42	1.21	6.8	5.7	144
40Ar	12	730	3.8	1.06	2.55	0.43	1.19	6.8	5.6	142
40Ar	14	308	3.9	1.23	2.69	0.48	1.37	5.9	5.1	118
209Bi	30	306	3.9	1.36	2.84	0.52	1.52	5.4	5.0	100
84Kr	18	380	2.7	1.18	2.56	0.47	1.27	5.4	5.1	126

Design idea: trying to reach SUSI magnetic field parameters with normally conducting solenoid and permanent magnet technology.

Also:

- Microwave power of 4 kW or higher (no saturation seen)
- Resonance length of 115–145 mm
- Plasma chamber diameter of 100 mm

- Injection and extraction coils: 7 double wound, double pancakes (20 turns)
- Middle coil: 3 double wound, double pancakes (20 turns)
- Power consumption 120–220 kW at 18 GHz mode, 100 kW at 14 GHz

Solenoid field design

Total P (kW)	linj / Pinj (A / kW)	lext / Pext (A / kW)	Imid / Pmid (A / kW)	Binj (T)	Bext (T)	Bmin (T)	gradB Inj (T/m)	gradB Ext (T/m)	Plasma (mm)
HIISI:									
216	1050 / 101	1050 / 101	600 / 14	2.51	1.52	0.43 (66 %)	6.3	6.3	132
158	1000 / 92	820 / 62	300/3.6	2.47	1.33	0.42 (65 %)	6.1	6.1	143
137	1000 / 92	680 / 43	210/1.8	2.48	1.18	0.41 (64 %)	6.2	5.5	157
139	900/75	820 / 62	250 / 2.5	2.36	1.33	0.40 (62 %)	6.2	5.8	151
120	800 / 59	820 / 62	125 / 0.6	2.22	1.34	0.40 (62 %)	5.6	6.2	154
SUSI:									
Xe35+				2.82	1.56	0.46	6.6	5.9	115
Ar12+				2.55	1.19	0.43	6.8	5.6	142

Solenoid field configuration of SUSI can be met as well as possible.

It is difficult to reach required 1.36 T radial field using permanent magnets.

Methods to boost the field:

- 1. Minimize distance between magnet and plasma at the pole
- 2. Cool the magnets (5 % in B_r going from 20°C to -10°C)

Water cooling

channel

Permanent magnet grade N40UH was chosen for the first hexapole

N40UH	$B_r = 1.29~\mathrm{T}$	$H_c = 1990$ kA/m
N42SH	$B_r = 1.32 \text{ T}$	$H_c = 1600 \text{ kA/m}$
N48H	$B_r = 1.42 \text{ T}$	$H_c = 1350 \text{ kA/m}$

H-field analysis shows magnets are exposed to 1800 kA/m, ok at 20°C

the contribution of the second

Hexapole design

24-segment offset Halbach

Hexapole magnetic field

36-segment Halbach for further improvement?

The second second second

The Wommilia Automation

Hexapole #1 — N40UH

- Being designed, will not reach 1.36 T
- Will be used to develop and verify techniques needed for refridgeration
- Works with high confidence even at 20°C
- Provides a backup for hexapole #2

Hexapole #2 — N48H?

- Future development
- Aims to $B_{\text{pole}} > 1.36 \text{ T}$
- Dependent on reliable refridgeration system

Cross section

Only 12 PEEK-insulated rods are holding hexapole in place

- Thermal contact between sleeve and magnets
 → thermally conducting paste
- Heat expansion:
 - NdFeB: $\alpha_{\parallel} = 6 \cdot 10^{-6}$ /K,
 - NdFeB: $\alpha_{\perp} = -2 \cdot 10^{-6}$ /K
 - Aluminium: $\alpha = 23 \cdot 10^{-6}$ /K
- Simple model \rightarrow ok down to -20° C
- In reality?
- Thermal cycling is a risk

Development needed!

Plasma chamber

UNIVERSITY OF JYVÄSKYLÄ

A DESCRIPTION OF THE OWNER

- Plasma chamber is constructed from two concentric aluminium cylinders shrink fitted together
- Cooling channels and pole grooves are machined to the inner one
- Ends are welded together

Structure stresses

Shrink fit by 0.06 mm overlap in diameter causes 50 MPa stresses

At 400 K (130°C) there is still plenty of safety margin

Schedule for HIISI project

Project is on schedule

Expecting first beams in late 2016.

Thank you for your attention!

