Improvement of Beam Intensities for Ion Beams with Charge-to-Mass Ratio of 1/3 with Two-Frequency Heating Technique

Contents:

- **1. Background Status of Carbon Ion Radiotherapy**
- **2. Motivation Requirement for life science research**
- **3. Technical Method**
- **4. Experimental Results**
- **5. Discussion**

A. Kitagawa, T. Fujita, M. Muramatsu, NIRS, Chiba, Japan Y. Kato, Osaka Univ., Osaka, Japan K. Fukushima, N. Sasaki, K. Takahashi, W. Takasugi, AEC, Chiba, Japan

H. Tsujii *et al.*, New Journal of Physics 10, 075009 (2008). H. Tsujii and T. Kamada, Jpn. J. Clin. Oncol. 42, 670 (2012).

Summary of present clinical results

Carbon ion radiotherapy has 3 large advantage,

Present facilities in Japan

	Period	Patients					
		total	(/year)				
HIMAC	('94 – '14.3)	8227	(888)				
HIBMC	('05 – '13.12)	1905	(249)				
GHMC	('10 – '13.12)	985	(448)				
Saga-H	IMAT ('13.8 – '14.	.1) 84	(-)				
	sum	11201	(1585)				

<u>Under construction:</u> iROCK (plan '15 –)

Operation facilities:

<u>Other plans:</u> Osaka, Yamagata, Okinawa, ...

ECRIS dedicated for carton ion radiotherapy

NIRS

M. Muramatsu, et al., Rev. Sci. Instrum. 76, 113304 (2005).

	Kei2
Mirror magnetic field	
material	Permanet (NdFeB)
Injection field	0.87 T (fixed)
Minimum B field	0.25 T (fixed)
Extraction field	0.59 T (fixed)
Axial magnetic field	
material	Permanent (NdFeB)
Surface field	0.75
Effective chamber size	
Length	105
Diameter	55
Microwave	
Frequency	8 – 11 GHz
Power	300 W
Extraction	
Voltage	30 kV

Operation status of Kei-series

lon source	Facility	Launch	Operation time (hours)	Failures ^{*1} during treatment
Kei2	HIMAC	2010 ^{*2}	-	- *3
KeiGM1	GHMC	2009	20130	3
KeiGM2	(stand alone)	2011	1813	- *3
KeiSA	SagaHIMAT	2012	7200^{*4}	0
KeiGM3	i-ROCK	2014(plan)	-	-

*1 Failures interrupted the patient treatment

- ^{*2} Relocation from the test bench into the accelerator
- ^{*3} Utilized for the development or experiments only
- ^{*4} Including commissioning in the factory

Proposals of basic sciences at HIMAC

Rough breakdown of beam time

Beam time ~ 5000 hours / year

Life science uses a half of beam time

Life science experiments

Hospital specified injector design

RFQ

APF IH-DTL ECRIS 5m 0m

Major parameter of the compact linacs									
Parameters	RFQ	IH-DTL	units						
Injection energy	0.01	0.61	MeV/n						
Extraction energy	0.61	4.0	MeV/n						
Frequency	200	200	MHz						
q/m	1/3	1/3	-						
Cavity length	2.5	3.4	m						
Outer diameter	0.42	0.44	m						

Development of Kei3

Charge-to-mass ratio: Target ion species: Magnet: Microwave:

about 1/3 (margin is 10%) He ~ Ne (if possible ~ Si) same as previous Kei-series

M. Muramatsu, et al., ECRIS2012, Sydney, September 2012, p.49 (2012).

This will be not sufficient for ion species heavier than Si, like Fe.

18GHz NIRS-HEC

Features

- Max. 60kV extraction voltage (A high voltage power supply on the source potential safely applies the extraction voltage between the plasma electrode and the extraction electrode independent of the source potential.)
- Room temperature coils
- Vertical beam extraction
- For production of ions with charge-to-mass ratio of 1/7
- Long lifetime with the minimum maintenance under dirty conditions
- Good reproducibility for easy operation

Two-Frequency Heating Technique

In order to improve the intensity, we tested the two-frequency heating technique.

Advantages

- Effective for any kinds of ion species
- Coexistent with almost other techniques
- No modification of existing structure

Improvement of plasma instability

10eµA / div.

10eµA / div. KLY 720W + TWT300W = 1020WKLY only 960W (unstable) Real of the second KLY only 720W KLY only 480W 0 1ms / div. Important points for better outputs

- To supply enough power for both microwaves.
- To precisely adjust the additional frequency. The best frequency depends on other parameters, magnetic configuration, vacuum pressure, and so on.

NIRS HIMAC 3. Technical Method

Metal Ions from Volatile Compound (MIVOC) method

The two-frequency heating technique requires the precise pressure control.

Typical Spectrum of Ni

The intensity of ⁵⁸Ni¹⁷⁺ was 26 eµA.

The peak of ⁵⁸Ni¹⁸⁺ was coverd by the peak of O5+. The peak of ⁶⁰Ni¹⁸⁺ was appeared. The intensity of ⁵⁸Ni¹⁸⁺ was estimated about 12 eµA. Although the peak of ⁵⁸Ni¹⁹⁺ and ⁶⁰Ni¹⁹⁺ were covered, we expected an output current for ⁵⁸Ni¹⁹⁺ of a few eµA. <u>Operation parameters</u> optimized ⁵⁸Ni¹⁷⁺ at after-grow

 $\begin{array}{l} t_{\mu\nu} = 30 \text{ms} \\ f_1 = 18.00 \text{GHz}, \ P_1 = 630 \text{W} \\ f_2 = 17.87 \text{GHz}, \ P_2 = 1100 \text{W} \\ B_{\text{inj}} = 1.21 \text{T}, \ B_{\text{ext}} = 0.74 \text{T} \\ \text{V}_{\text{ext}} = 31 \text{kV}, \ d_{\text{ext}} = 20 \text{mm} \\ \text{T}_{\text{Ni}} = 23 \text{C}^{\circ} \\ \text{S}_{\text{O2}} = 0.024 \text{cc/min atom} \\ P_{\text{inj}} = 3.3 \text{x} 10^{-5} \text{Pa} \end{array}$

Typical Spectrum of C

Peaks of oxygen appeared due to residual gas from the previous measurement. This was not suitable condition for highly charged carbon ions. Operation parameters optimized C⁵⁺ at after-grow

 $\begin{array}{l} t_{\mu\nu} = 20 ms \\ f_1 = 18.00 GHz, \ P_1 = 1050 W \\ f_2 = 17.843 GHz, \ P_2 = 1200 W \\ B_{inj} = 1.21 T, \ B_{ext} = 0.72 T \\ V_{ext} = 30 kV, \ d_{ext} = 18 mm \\ S_{CH4} = 0.070 cc/min \ atom \\ P_{inj} = 5.0 x 10^{-5} Pa \end{array}$

Improvement of Beam Currents

	Н	He	В	В	С	Ν	0	Ne	Si	Cl	Ar	Ti	Fe	Ni	Со	Cu	Ge	Kr	In	Sn	Xe
q+/m	2	4	10	11	12	14	16	20	28	35	40	48	56	58	59	63	74	84	115	120	132
1+	800	4000																			
2+		550	150		650	1240	1420														
3+						1050	930	1200													
4+				250	870	1000		1050													
5+					550	920	900	1160	250												
6+						150	770	750		400	320										
7+							165	300			650										
8+								100		190	1100		35								
9+										60	650		200		160						
													400								
10+		Red:										8	160	165		50					
11+		after-	glow to	echnic	lue						200		130	125			50	210			
12+		Green	:								116		130	110				254			
13+		two-fr	equen	cy hea	ating						42		120	83				260			
14+		Purple	e: botł	ı							15			78							
15+													70	75				250			
																		200			
16+]	New ro	ecords									41	56							
17+			in 2	014									12	26				153			
18+													2	12				110		20	185
19+														a few				80			170
20+																		44			168
																			140		
21+																					155
																					200
22+																		11			
23+																		5			115
24+																					91
25+																					
26+																					37
27+																					11

Estimation of possibility to use

Charge state	5+	12+	13+	14+	15+	16+	17+	18+	19+
С	550								
Ar		116	42	15					
Fe		130	120		70	41	12	2	
Ni		110	83	78	75	56	26	12	a few

Estimation of possibility to use

Charge state	5+	12+	13+	14+	15+	16+	17+	18+	19+
С	550								
Ar		116	42	15					
Fe		130	120		70	41	12	2	
Ni		110	83	78	75	56	26	12	a few

Depth dose distribution at biology experiment room

Uniform field size: $2 \text{ cm}\phi$

It is <u>enough for cell</u> <u>experiments</u>, but more intensity is better for animal experiments.

Einzel lens

Faraday C

Analyzer magnet

Footprints of NIRS-HEC and Kei-series

- Drawbacks of NIRS-HEC
- Initial construction cost is two or three times higher than Kei-series.
- Electric power consumption is huge (250kVA).

5. Discussion

Another important point!

Ion-source specialist is not expected in a hospital.

- The installation of gas bottles or MIVOC containers must be simple.
- The complicated operation is not acceptable. All operation parameters must be stored for the software control system. Is the one-touch operation possible?
- How to check the reproducibility by non specialists?

5. Discussion

NIRS

Procedure of the switching of ion species

Carbon beam currents after the switching from oxygen and neon beam by <u>Kei2</u>.

5. Discussion

The mechanism of two-frequency heating technique is still not clear. Some recent observations of the additional frequency dependence suggested that an electron orbit effect might play some role.

One approach to verify or to reject this assumption is a computer simulation. The calculation by the TrapCAD code has continued by our collaborators.

S. Biri et al., Rev.Sci.Instrum. 85, 02A931 (2014).

<u>Summary</u>

1. Status of carbon ion radiotherapy

- Present clinical results show enough performance.
- ECRISs have completely satisfied the medical requirement.
- New facilities are under construction or planned.

2. Requirement for life science research

- Due to advantage to use the design for a radiotherapy dedicated facility, ions with the charge-to-mass ratio of 1/3 are necessary for life science research.
- It is expected the range of ion species covers to Fe, Ni, or Co..

3. Technical method

- 18GHz normal temperature ECRIS was tested.
- Two-frequency heating technique has been utilized.
- MIVOC method has been utilized for Fe and Ni.

4. Experimental results

- Output currents of C⁵⁺, Ar¹³⁺, Fe¹⁸⁺, and Ni¹⁹⁺ were improved.
- Fe intensity satisfies cell biology experiments.

5. Discussions

- It's necessary to establish easy operation for a hospital.
- The time interval is remained problem.