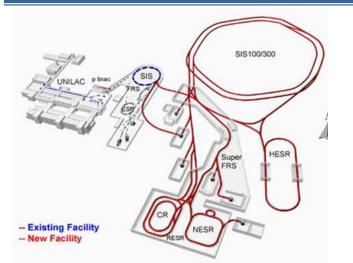
How can an ECRIS meet the requirements of next generation heavy ion accelerator facilities

Hongwei Zhao, <u>Liangting Sun</u>

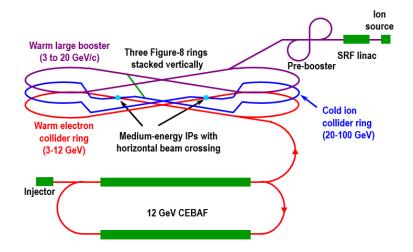
Institute of Modern Physics, CAS Lanzhou, China

Outline

• Next generation heavy ion accelerator facilities


• Impact of highly charged ion source on the next generation heavy ion accelerator such as HIAF

• ECRIS Challenges to meet the next generation heavy ion accelerator such as HIAF


• Summary

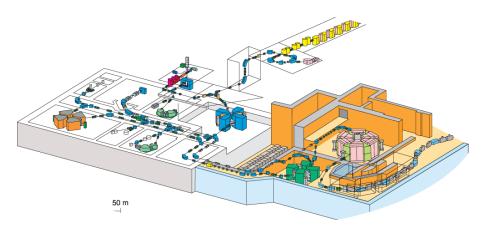
Intense highly charged pulsed-heavy-ion beams from ion source requested by accelerators

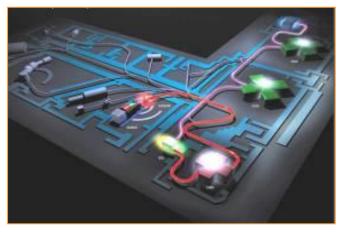
GSI FAIR U²⁸⁺ 15emA/100μs

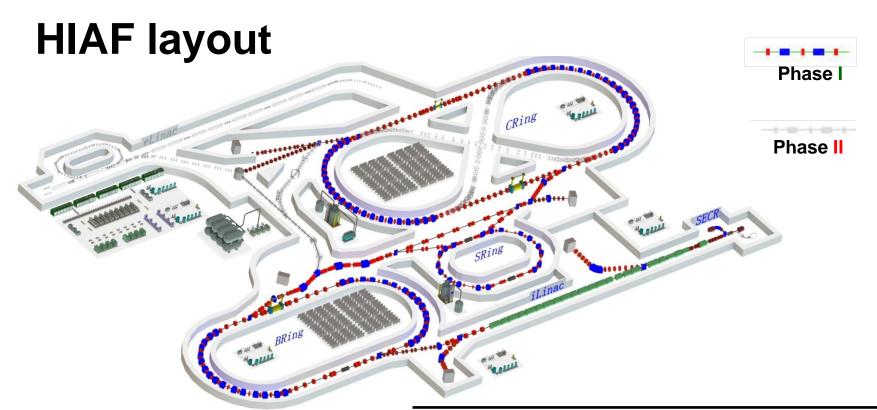
JLAB MEIC Pb³⁰⁺/Au³²⁺ 0.5 emA/500µs

BNL RHIC Au³²⁺ 2 emA/10µs

IMP HIAF U³⁴⁺ 1.7 emA/400µs


Intense highly charged CW-heavy-ion beams from ion source requested by accelerators


MSU FRIB U³⁴⁺ 13pµA/CW


IMP HIRFL U⁴¹⁺ 100eµA/CW

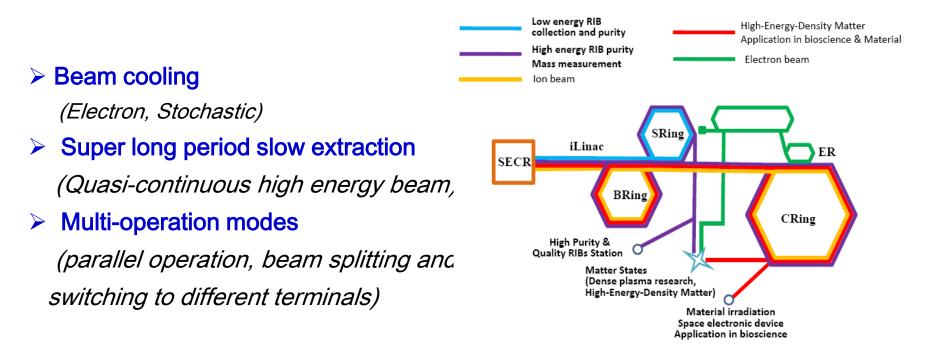
RIKEN RIBF U³⁵⁺ 525eµA/CW

SPIRAL2 Ar¹²⁺ 1emA/CW

	Accelerator		lons	Energy	Intensity
SECR: ECR ion source	Ion	ECR	U^{34+}	14 keV/u	0.05 pmA
iLinac: Superconducting ion linac	source	H_2^+	H_2^+	14 keV/u	2.0 pmA
BRing: Booster ring	iLinac		U^{34+}	25 MeV/u	0.028 pmA
			H_2^+	54 MeV/u	1.0 pmA
CRing: Compression ring	DDing		U ³⁴⁺	0.8 GeV/u	~3.3×10 ¹¹ ppp
eLinac: Electron linac	BRing		р	9.5 GeV/u	~2.3×10 ¹² ppp
SRing: High precision spectrometer			U^{34+}	1.1 GeV/u	~1.0×10 ¹² ppp
orting. Then precision spectrometer	CRing		U^{92+}	4.1 GeV/u	~2.0×10 ¹¹ ppp
			р	12.0 GeV/u	~4.5×10 ¹² ppp

Main features of HIAF Phase I

High intensity /Short pulse


(1.0×10¹² ppp / 50-100ns)

High current & high charge state SC ion Linac

(28 pµA/ U³⁴⁺/Superconducting)

> Two planes painting injection supported by electron cooling

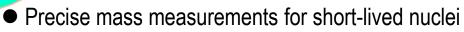
Nearly 150 turns one injection, 5 times of conventional multiturn injection

Ion source related

HIAF Science-1

Nuclear Physics

- New phenomena far from stability
- Shell structure far from stability


Neutron stars

EOS

Neutron Skins

uclear She

Pygmy Resonance

- Synthesis of new isotopes near the proton-drip line
- Structure and reaction mechanism with exotic beams
- Properties of asym. nuclear matter at high density
- Decay and chemical properties of super-heavy nuclei
- Evolution of collective motion in complex nuclei

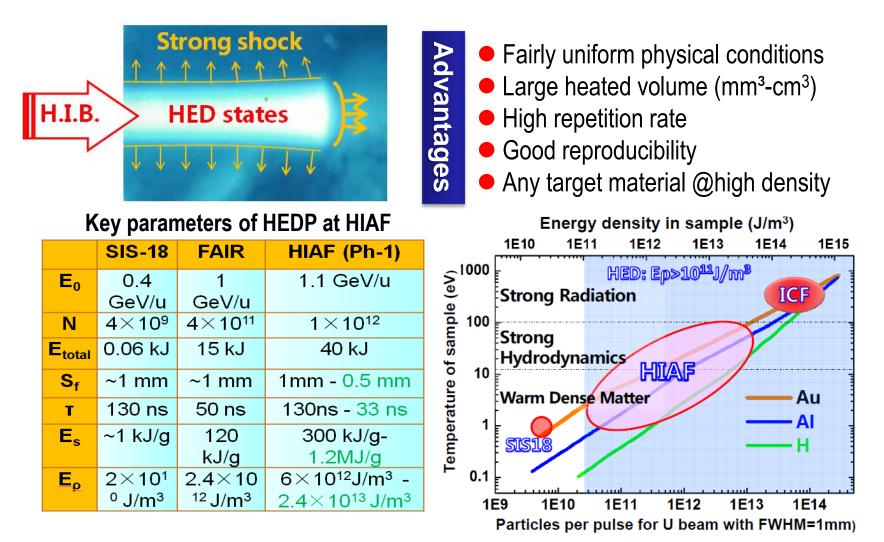
HIAF Science-2

Nuclear Astrophysics

How were the heavy elements from iron to uranium made?

Solar Abundances ance What are the nuclear reactions that orders drive stars and stellar explosions? tomic Mas **Planetary Nebula** Small Star **Red Giant** hite Dwar **Evolution of stars and energy generation** Supernova **Red Supergiant** Neutron Sta Large Star **Origin of chemical elements in Cosmos** stellar Cloud

> with Protostars


AGES NOT TO SCALE

Black Hol

Top 11 Greatest Unanswered Questions of Physics

HIAF Science-3

High Energy Density Physics (HEDP)

HIAF will offer new opportunity for HEDP !

Impact of highly charged ion source on the next generation heavy ion accelerator such as HIAF

Accelerator physicist always expects

Accelerator physicist always expects

Q as high as possible

I as high as possible

 $\boldsymbol{\varepsilon}$ as low as possible

Accelerator physicist always expects Q as high as possible

I as high as possible

 ε as low as possible

Accelerator physicist always expects Q as high as possible

I as high as possible

 $\mathbf{\epsilon}$ as low as possible

Performance + Cost

Accelerator physicist always expects

Q as high as possible*I* as high as possible

 ε as low as possible

Performance + Cost

How to choose the basic beam from the ion source of HIAF?

Accelerator physicist always expects

Q as high as possible*I* as high as possible

ɛ as low as possible

Performance + Cost

How to choose the basic beam from the ion source of HIAF? 238 134+

Accelerator physicist always expects

Q as high as possible*I* as high as possible

ɛ as low as possible

Performance + Cost

How to choose the basic beam from the ion source of HIAF?

238 []34+ 238 []46+

Accelerator physicist always expects

Q as high as possibleI as high as possible

ε as low as possible

Performance + Cost

How to choose the basic beam from the ion source of HIAF?

 $238U^{34+}$, $238U^{46+}$, $238U^{55+}$?

Accelerator physicist always expects

Q as high as possible*I* as high as possible

ɛ as low as possible

Performance + Cost

How to choose the basic beam from the ion source of HIAF?

$$^{238}U^{34+}$$
, $^{238}U^{46+}$, $^{238}U^{55+}$?

Will any ion source be able to produce 1-2 emA for pulsed beam 5 Hz/0.3-0.5 ms in the next 10 years?

Ion sources possibly utilized for the next generation heavy ion accelerator facility

Ion sources possibly utilized for the next generation heavy ion accelerator facility

Ion sources possibly utilized for the next generation heavy ion accelerator facility

- **CW and pulsed beam** Only one choice: **ECRIS**
- Pulsed beam
 - **ECRIS** (3rd &4th Gen., challenging)
 - **EBIS** (too short pulse, less current)
 - LIS (too short pulse, R&D)
 - > **MEVVA**+ **stripper** (\leq 3Hz, cathode lifetime)
 - Gasdynamic ECR+ stripper (R&D)
 - > New concept ion source ?

Pulsed-beams from ion source for those high energy (GeV/u) high current heavy ion accelerators

Pulsed-beams from ion source for those

high energy (GeV/u) high current heavy ion accelerators

Ion Source	ECRIS	EBIS	LIS	MEVVA
Ion beam	U ³⁴⁺	Au ³²⁺	Pb ²⁵⁺	U ^{4+→28+}
Requested beam current	50 pμA 400 us	1.7 emA 10us	10 emA 6us	(U ⁴⁺ 20 emA) U ²⁸⁺ 15emA 100us
Requested (ppp)	1.2 ×10 ¹¹	3.2×10 ⁹	1.5×10 ¹⁰	3.3×10 ¹¹
Facility	HIAF/IMP	RHIC/BNL	LHC/CERN	FAIR/GSI
Note	afterglow	pulsed	pulsed	Stripping
Achieved	10-15 рµА	1.7 emA	10 emA	5.7 emA
Data from	Design report	E. Beebe ICIS11	John Tambini's paper	Design report O.Kester talk

Ion Source	ECRIS	EBIS	LIS	MEVVA
Ion beam	U ³⁴⁺	Au ³²⁺	Pb ²⁵⁺	U ^{4+→28+}
Estimated				(U ⁴⁺ 100 emA)
beam	4.0 emA	30 emA	100 emA	U ²⁸⁺ 75emA
current	400 us	10us	6us	100us
Ions per pulse	2.8 ×10 ¹¹	6×10 ¹⁰	1.5×10 ¹¹	1.6×10 ¹²
Note	afterglow	Pulsed	pulsed	stripping
Data from	Estimated	Private communication with E. Beebe	Estimated	Estimated

Ion Source	ECRIS	EBIS	LIS	MEVVA
Ion beam	U ³⁴⁺	Au ³²⁺	Pb ²⁵⁺	U ^{4+→28+}
Estimated				(U ⁴⁺ 100 emA)
beam	4.0 emA	30 emA	100 emA	U ²⁸⁺ 75emA
current	400 us	10us	6us	100us
Ions per				
pulse	2.8 ×10 ¹¹	6×10 ¹⁰	1.5×10 ¹¹	1.6×10 ¹²
Note	afterglow	Pulsed	pulsed	stripping
Data from	Estimated	Private communication with E. Beebe	Estimated	Estimated

• Only talk about the beam current, not take into other issues.

Ion Source	ECRIS	EBIS	LIS	MEVVA	
Ion beam	U ³⁴⁺	Au ³²⁺	Pb ²⁵⁺	U ^{4+→28+}	
Estimated				(U ⁴⁺ 100 emA)	
be There is a challenge for an ECRIS in pulsed beam production. A					
CU ECRIS community must take up the challenge!					
Ions per pulse	2.8 ×10 ¹¹	6×10 ¹⁰	1.5×10 ¹¹	1.6×10 ¹²	
Note	afterglow	Pulsed	pulsed	stripping	
Data from	Estimated	Private communication with E. Beebe	Estimated	Estimated	

• Only talk about the beam current, not take into other issues.

How much budget can a highly charged ion source save for a 100 MeV/u SC heavy ion linac

How much budget can a highly charged ion source save for a 100 MeV/u SC heavy ion linac

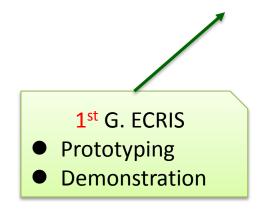
	238U34+	238U46+	238U55+
Injection E (MeV/u)	1.3	1.3	1.3
Output E (MeV/u)	100	100	100
Design I _{max} (emA)	1.0	1.0	1.0
SC cavity	HWR009+HWR015+ Spoke021	HWR009+HWR015+ Spoke021	HWR009+HWR015+ Spoke021
SC cavities	44+100+248=392	40+92+176=308	32+80+152=264
Solenoids	78	65	55
CRM Reduced		11	16
Total length (m)	288	225	197
Budget reduced		>70 M\$ (MP not included)	>100 M\$ (MP not included)

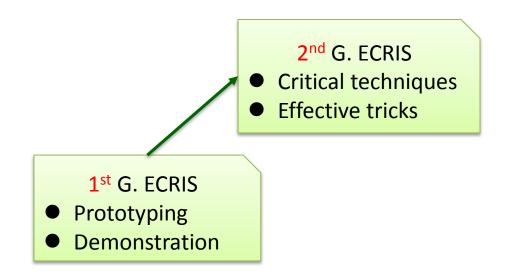
M/P

How much budget can a highly charged ion source save for a 100 MeV/u SC heavy ion linac

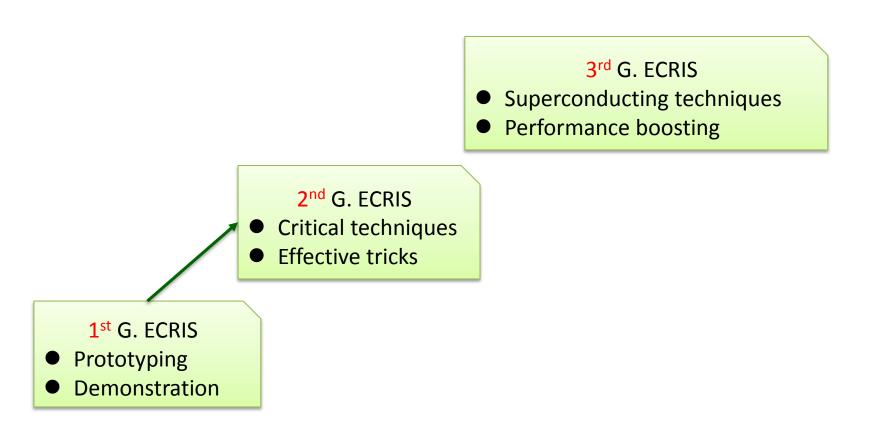
	238U34+	238U46+	238U55+	
Injection E (MeV/u)	1.3	1.3	1.3	
Output E (MeV/u)	100	100	100	
Design I _{max} (emA)	1.0	1.0	1.0	
SC cavity	HWR009+HWR015+	HWR009+HWR015+	HWR009+HWR015+	
It is very much worthy of developing highly charged ion source aiming at very high Charge state!				
Solenoids	78	65	55	
CRM Reduced		11	16	
Total length (m)	288	225	197	
Budget reduced		>70 M\$ (MP not included)	>100 M\$ (MP not included)	

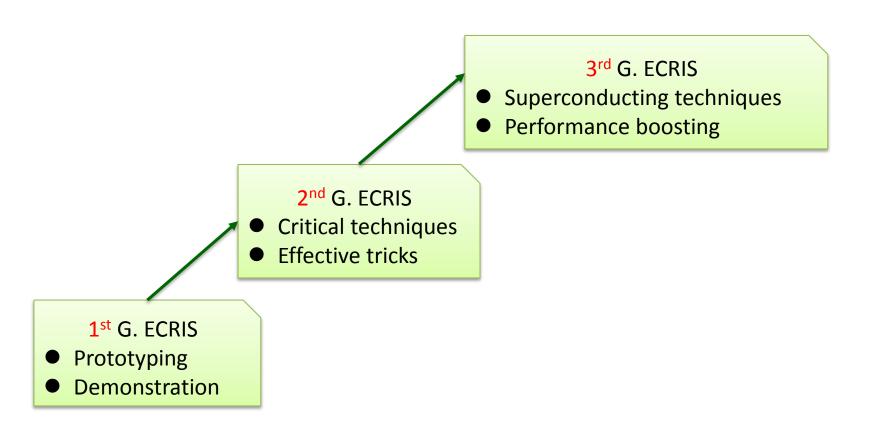
F**I**VI P

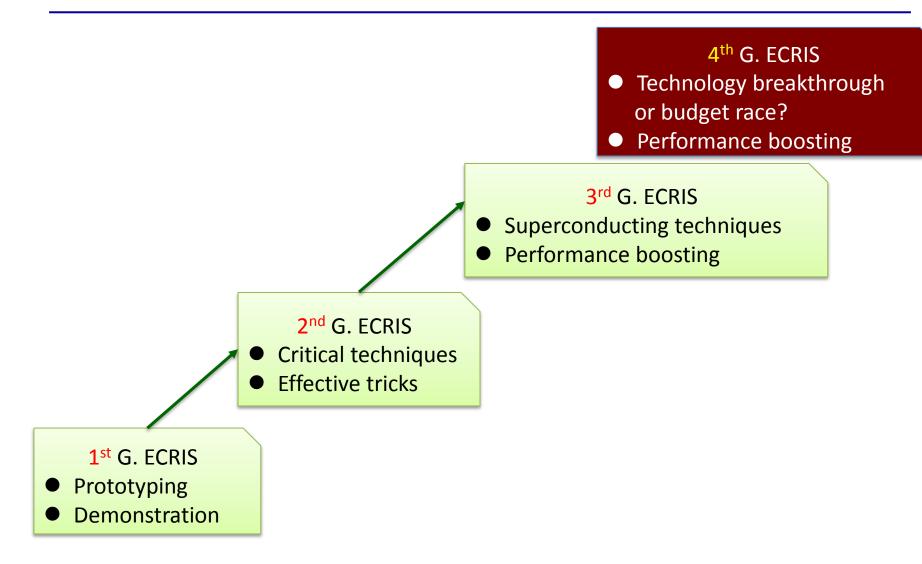

ECRIS Challenges to meet the next generation heavy ion accelerator such as HIAF

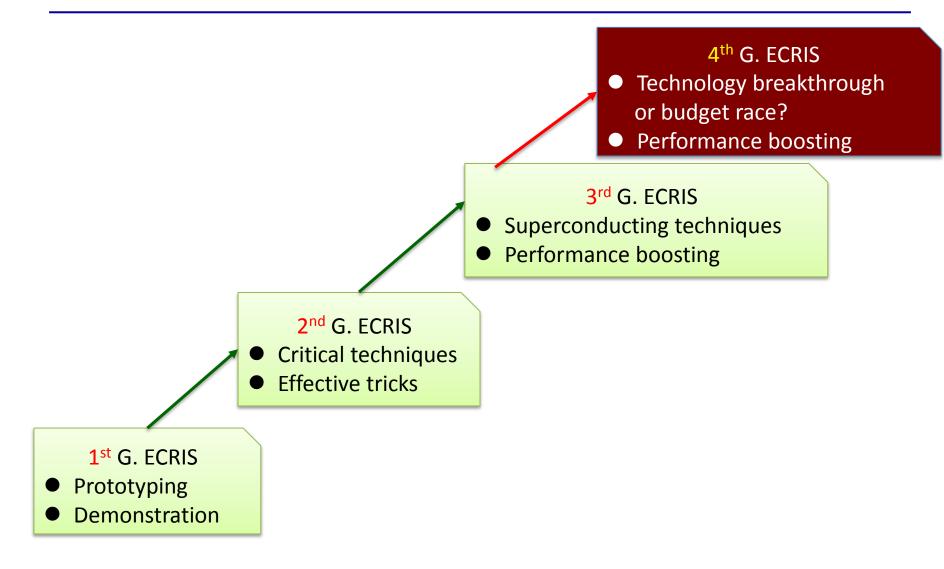

1st G. ECRIS

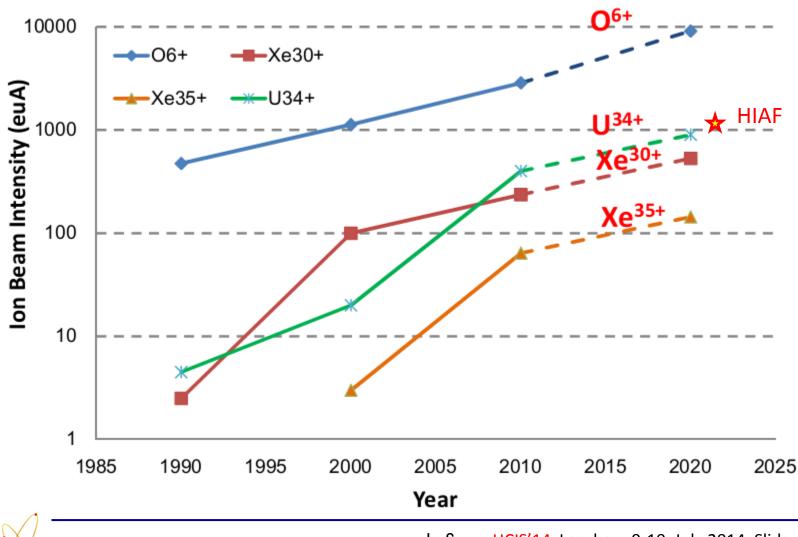
- Prototyping
- Demonstration

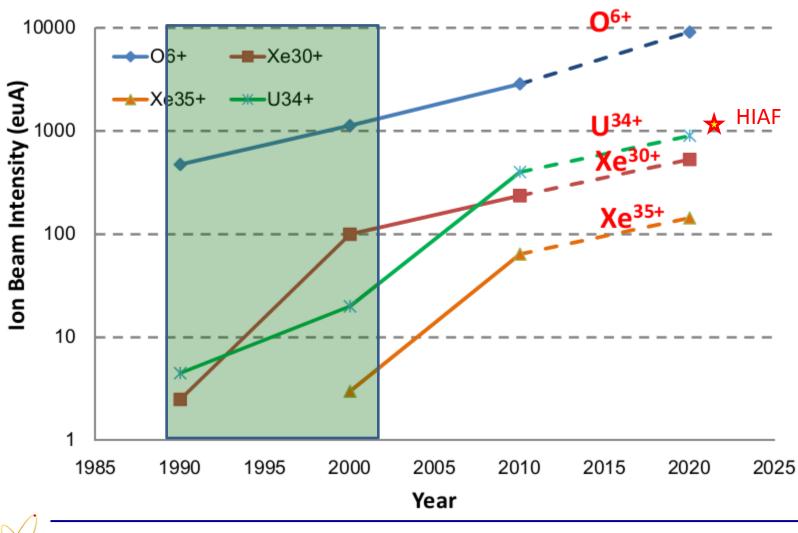




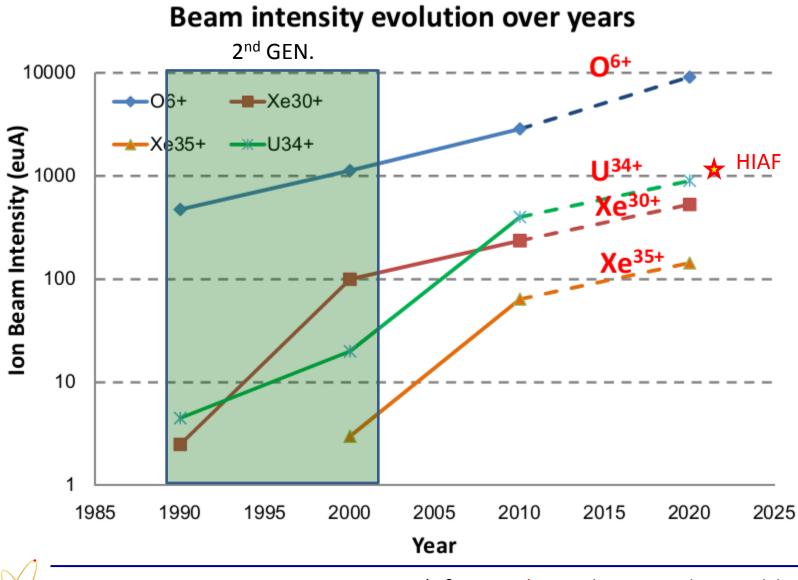




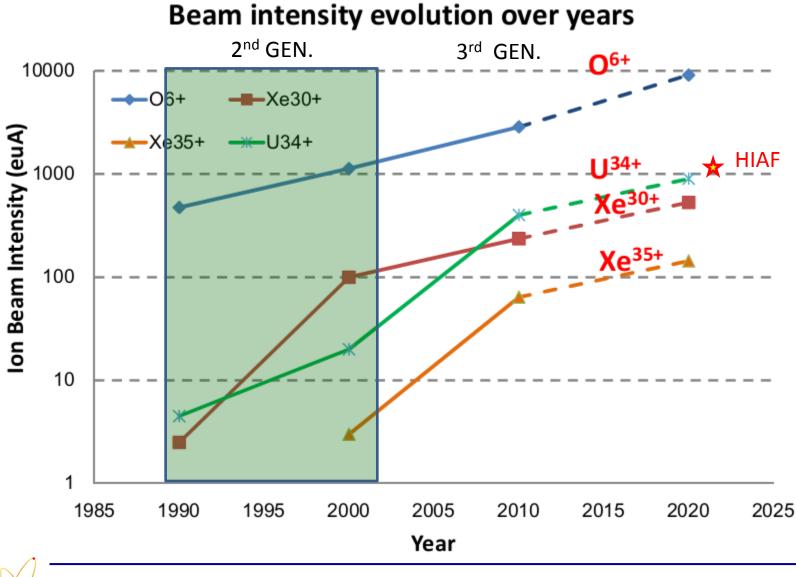


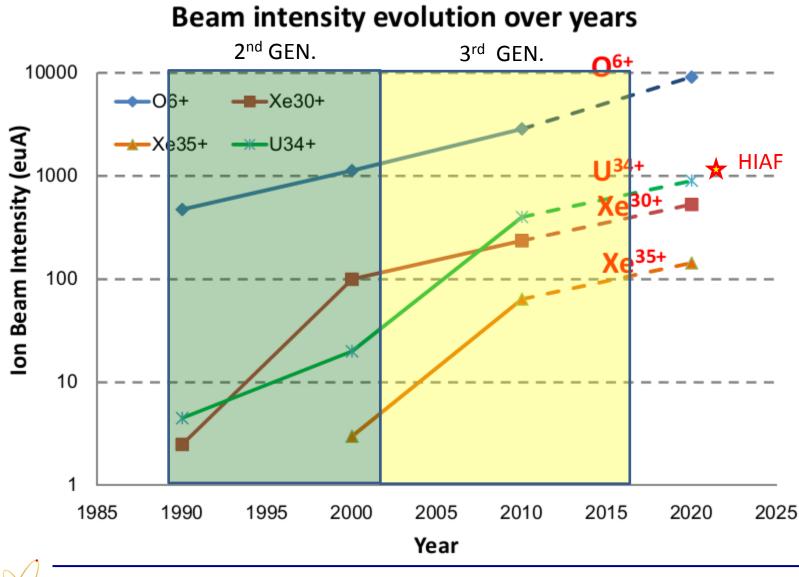

MP

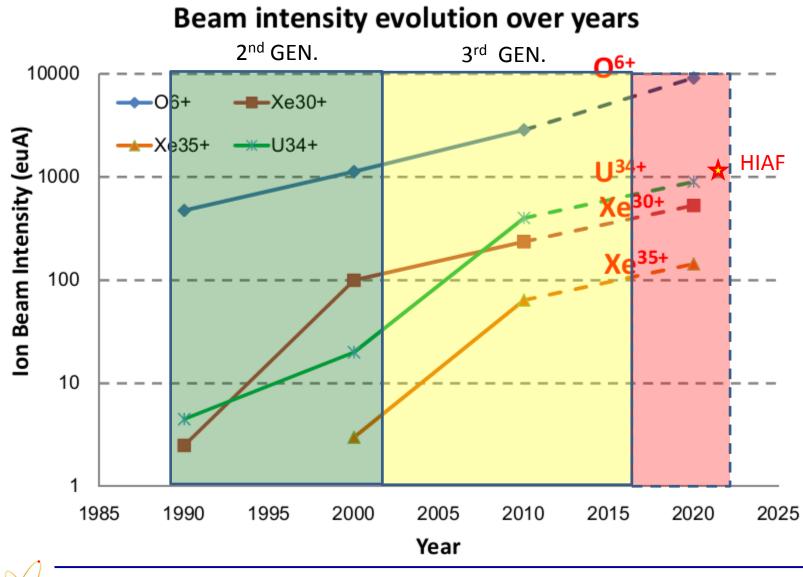
Beam intensity evolution over years

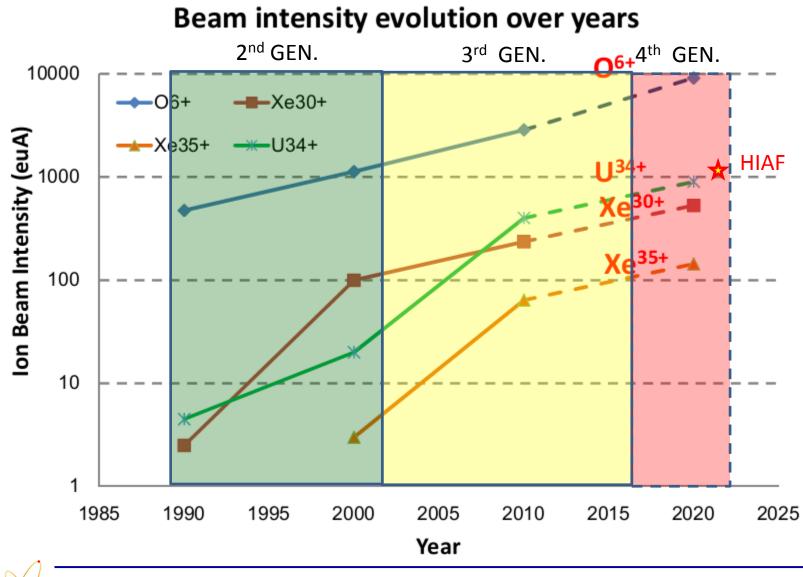


MP


Beam intensity evolution over years


MP


MP


MP

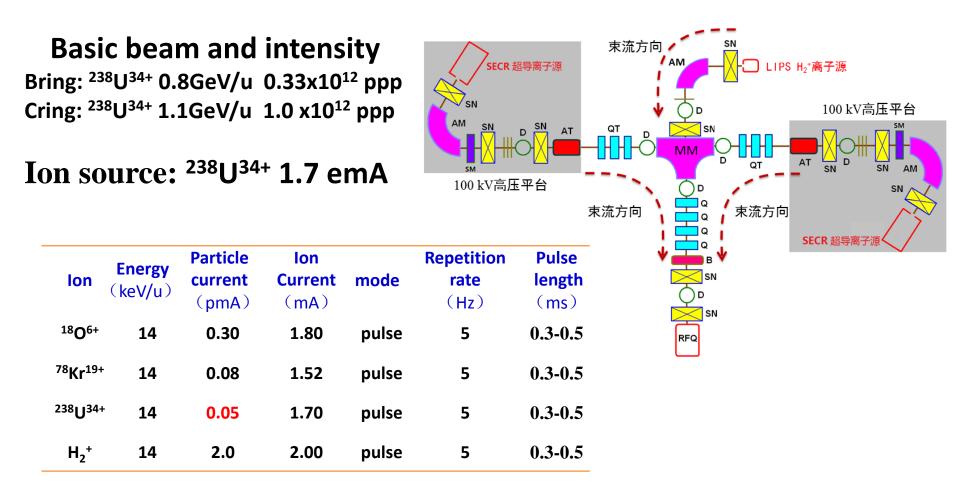
MP

MP

Expected performance of a 4th generation ECRIS

	²⁰⁹ Bi ^{30+/238} U ³⁴⁺ (CW beam)	²⁰⁹ Bi ⁴²⁺ / ²³⁸ U ⁴⁶⁺ (CW beam)	²⁰⁹ Bi ⁵¹⁺ / ²³⁸ U ⁵⁵⁺ (CW beam)
2 nd GEN ECRIS (14-18 GHz)	20 eµA	1.8 eµA	
3 rd GEN ECRIS (24-28 GHz)	1000 eµA?	50 eµA	5 еµА
4 th GEN ECRIS (40-60 GHz)	2000 eµA?	300 eµA?	50 eµA?

SECRAL source already produced ²⁰⁹Bi³⁰⁺ CW 700 eµA^{*}. A new record!

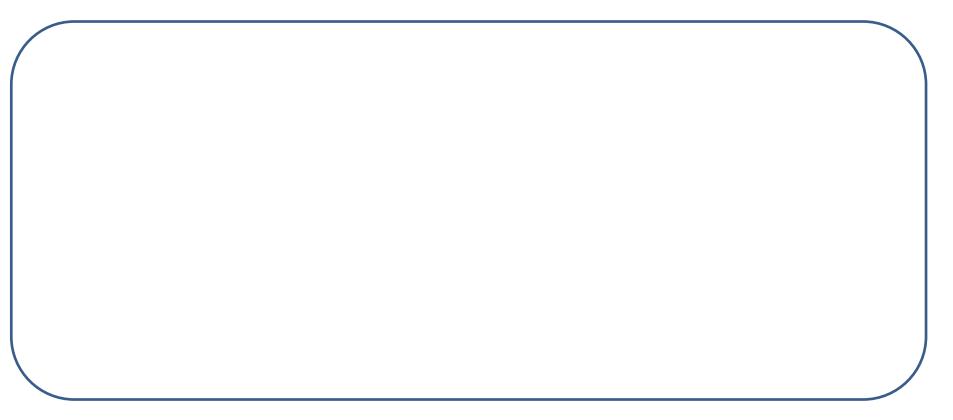

- Heavy ion intensity frontier is the main issue for HIAF.
- That is why HIAF chooses the 4th generation ECRIS.

Also keep CW option

• Potential capability of the 4th generation ECRIS.

* See L. Sun's talk on Tuesday, TUOMMH03

HIAF requirements to ion source



If HIAF would request the ion source to deliver ²³⁸U³⁴⁺ 1.7 emA stable beam, the ion source would have to produce the maximum intensity around 2.5-3.0 emA.

• Big technical challenge

- Big technical challenge
- Very long time for R&D (10 years from R&D to High performance)

- Big technical challenge
- Very long time for R&D (10 years from R&D to High performance)
- High cost (5-6 M\$)

- Big technical challenge
- Very long time for R&D (10 years from R&D to High performance)
- High cost (5-6 M\$)
- **Big risk** (Could fail completely)

- Big technical challenge
- Very long time for R&D (10 years from R&D to High performance)
- High cost (5-6 M\$)
- **Big risk** (Could fail completely)

But amazing performance and exciting results

- Big technical challenge
- Very long time for R&D (10 years from R&D to High performance)
- High cost (5-6 M\$)
- **Big risk** (Could fail completely)

But amazing performance and exciting results

Are we ready to build the 4th generation ECRIS? How long time it may take? Much more challenge!

However, a lot of challenges to build a 4th Gen. ECRIS

- 40-60 GHz/10-20 kW rf coupling.
- 40-60 GHz ECR superconducting magnet.
- High flux x-ray heating and plasma chamber heating.
- Beam quality (emittance) and long-term stability.
- 30-50 mA mixed highly charged ion beam extraction and transmission.
- Refractory metal ion beam production
- Risky and high cost.

- ECRIS with very high charge state and high current may play a significant role and contribute a lot in the next generation heavy ion accelerator such as HIAF in terms of beam intensity and costeffective design.
- It is much worthy of developing the 4th generation ECRIS to explore the potential capability of the highly charged heavy ion beam production.
- Many technical challenges for the 4th generation ECRIS, strong R&D and prototyping are necessary.

Thank you for your attention!

