Periodic beam current oscillations driven by electron cyclotron instabilities in ECRIS plasmas

O. Tarvainen, T. Kalvas, H. Koivisto, J. Komppula, R. Kronholm, J. Laulainen University of Jyväskylä

> I. Izotov, D. Mansfeld, V. Skalyga Institute of Applied Physics – Russian Academy of Sciences

> > V. Toivanen CERN

Content

- Stability of ECRIS beams
- Experimental setup
- Results and discussion

Stability of ECRIS beams

Long-term variation of the beam current

- Changing gas balance
- Contamination

Periodic oscillations in ~ kHz range

Driven by plasma mechanisms

Peridoc oscillations of the beam current

MHD- or kinetic instabilities?

MHD- or kinetic instabilities?

Content

- Stability of ECRIS beams
- Experimental setup
- Results and discussion

Experimental setup – JYFL 14 GHz ECRIS (A-ECR)

- 1. Injection coil
- 2. Extraction coil
- 3. PM hexapole
- 4. Plasma chamber
- 5. Waveguides
- 6. Extraction
- 7. Pumping
- 8. Radial viewport

10 MHz – 50 GHz microwave detector diode connected to WR-75 waveguide

Current-mode BGO scintillator + PMT measuring the bremstrahlung power flux

Visible light collector coupled with Na-doped CsI PMT (300-600 nm)

Faraday cup \sim 5 m downstream in the beam line

Content

- Stability of ECRIS beams
- Experimental setup
- Results and discussion

O. Tarvainen et al. Plasma Sources Science and Technology, 23, 025020, (2014).

(typical) Diagnostics signals

Electron cyclotron instabilities

The energy of the microwave emission, E_{μ} , is described by mode- dependent growth and damping rates, γ and δ

$$rac{\mathrm{d}E_{\mu}}{\mathrm{d}t}pprox \langle \gamma-\delta
angle E_{\mu}$$

Exponential growth of the instability amplitude when $\gamma > \delta$

Electron cyclotron instabilities – growth rate

The growth rates for Whistlers and X-mode are proportional to the hot electron (number) density

$$\gamma_{\rm w} \propto \omega_{\rm ce} \frac{N_{\rm e,hot}}{N_{\rm e,cold}} \left(\frac{\langle E_{\perp} \rangle}{\langle E_{\parallel} \rangle} - 1 \right) {\rm e}^{-\xi \frac{B^2}{\langle E_{\parallel} \rangle N_{\rm e,cold}}}$$

$$\gamma_{\rm X} \propto \omega_{\rm ce} \frac{N_{\rm e,hot}}{N_{\rm e,cold}} \left(\frac{\langle E_{\parallel} \rangle^2}{\langle E_{\perp} \rangle m_{\rm e} c^2} \right),$$

Electron cyclotron instabilities – damping rate

The damping rates for Whistlers and X-mode are proportional to the electron collision frequency ν_{e} as

$$\delta_{\rm w} \approx \frac{\omega}{\omega_{\rm ce}} v_{\rm e} + \frac{v_{\rm g} \left| \ln R \right|}{L}$$
$$\delta_{\rm x} \approx v_{\rm e} + \frac{v_{\rm g} \left| \ln R \right|}{L},$$

Electron cyclotron instabilities

ECRIS parameters affecting the growth and damping rates

- B-field affects the electron heating rate (resonance gradient) and confinement
- Power affects the electron heating rate
- Neutral gas pressure affects the collision frequency
- Plasma species affects the energy loss in inelastic collisions

Results – threshold B-field

Results – repetition rate

Results – plasma species

Results – source potential

Results – beam current oscillations

Instabilities limiting the source perfomance

Instabilities limiting the source perfomance

Future plans

- A comprehensive study of cyclotron instabilities vs. extracted beam currents of different charge states of various elements
- Measurement of the ion beam energy spread in unstable operation mode
- Analysis of the microwave frequencies emitted by the instabilities

Thank You!

