

kvi - center for advanced radiation technology

Optimization of low-energy beam transport

Kernfysisch Versneller Instituut – Center for advanced radiation technology (KVI-CART)

H.R. Kremers, J.P.M. Beijers, S. Brandenburg Zernikelaan 25, 9747 AA, Groningen. The Netherlands

kvi - center for advanced radiation technology

- Introduction
- KVI- situation (brief)
 - Magnet aberrations and 4rms-emittance growth
- Optimization low energy beam line
 - Quick compensation by an additional sextupole effect?
 - General method to calculate the 4rms-emittance growth
 - Sectupoles
 - Solenoid lens
 - Einzel
 - Conclusions.

university of groningen kvi radi

kvi - center for advanced radiation technology

university of kvi-c groningen radiat

kvi - center for advanced radiation technology

university of groningen kvi - radia

kvi - center for advanced radiation technology

Geometrical acceptance = 100-200 mm.mrad

 ϵ_{4rms} = 20-100 mm.mrad

university of kvi - cer groningen

kvi - center for advanced radiation technology

university of kvi - ce groningen radiati

kvi - center for advanced radiation technology

university of groningen

kvi - center for advanced radiation technology

university of groningen

kvi - center for advanced radiation technology

wi-ce groningen kvi-ce

kvi - center for advanced radiation technology

Accelerator Laboratories:

Challenge: avoid emittance blowup due to:

- 1. lens <u>aberrations</u>
- 2. absence of <u>space charge compensation</u>

university of groningen

kvi - center for advanced radiation technology

Research emittance growth

- Simulations
 - Particle tracking codes, Raytrace, Track, GPT,
 - +: any field configuration. Lorentz3D
 - : slow (equation of motion is calculated for every track)
 - Mapping codes: Transport, GIOS, COSY Infinity 9.1
 - +: fast (equation of motion is already in the matrix)
 - : fixed elements.
- Measurements
 - Measurement of emittance
 - Slit grid, Allison scanner:
 - measurement in one plane, integrates over other planes
 - + proven technology
 - pepper pot emittance meter:
 - + measurement in two planes, cross correlations, slices emittances
 - Fixed grid

university of groningen kvi - center for advanced radiation technology

Gaussian distribution

$$\sigma_{11} = \iint (x_i - \langle x \rangle)^2 \rho(x, x') dx dx'$$

$$\sigma_{22} = \iint (x'_i - \langle x' \rangle)^2 \rho(x, x') dx dx'$$

$$\sigma_{12} = \iint (x_i - \langle x \rangle) (x'_i - \langle x' \rangle) \rho(x, x') dx dx'$$

$$\varepsilon_{xx'-4rms} = 4 \cdot \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2} = \frac{A_{86\%}}{\pi}$$

$$\varepsilon_{xx'-4rms,n} = \varepsilon_{xx'-4rms} \cdot \beta \cdot \gamma$$

university of groningen kvi - center for advanced radiation technology

Gaussian distribution

$$\sigma_{11} = \iint (x_i - \langle x \rangle)^2 \rho(x, x') dx dx'$$

$$\sigma_{22} = \iint (x'_i - \langle x' \rangle)^2 \rho(x, x') dx dx'$$

$$\sigma_{12} = \iint (x_i - \langle x \rangle) (x'_i - \langle x' \rangle) \rho(x, x') dx dx'$$

$$\varepsilon_{xx'-4rms} = 4 \cdot \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2} = \frac{A_{86\%}}{\pi}$$

$$\varepsilon_{xx'-4rms,n} = \varepsilon_{xx'-4rms} \cdot \beta \cdot \gamma$$

/ university of groningen / kvi - center for advanced radiation technology

Gaufssiandistributtion

$$\sigma_{11} = \iint (x_i - \langle x \rangle)^2 \rho(x, x') dx dx'$$

$$\sigma_{22} = \iint (x'_i - \langle x' \rangle)^2 \rho(x, x') dx dx'$$

$$\sigma_{12} = \iint (x_i - \langle x \rangle) (x'_i - \langle x' \rangle) \rho(x, x') dx dx'$$

$$\varepsilon_{xx'-4rms} = 4 \cdot \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2} = \frac{A_{86\%}}{\pi}$$

$$\varepsilon_{xx'-4rms,n} = \varepsilon_{xx'-4rms} \cdot \beta \cdot \gamma$$

university of groningen kvi - center for advanced radiation technology

Gaufssiandistributtion

$$\sigma_{11} = \iint (x_i - \langle x \rangle)^2 \rho(x, x') dx dx'$$

$$\sigma_{22} = \iint (x'_i - \langle x' \rangle)^2 \rho(x, x') dx dx'$$

$$\sigma_{12} = \iint (x_i - \langle x \rangle) (x'_i - \langle x' \rangle) \rho(x, x') dx dx'$$

$$\varepsilon_{xx''-4rms} = 4 \cdot \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2} = \frac{A_{860\%}}{\pi}$$

$$\varepsilon_{xx'-4rms,n} = \varepsilon_{xx'-4rms} \cdot \beta \cdot \gamma$$

kvi - center for advanced radiation technology

kvi - center for advanced radiation technology

kvi - center for advanced radiation technology

kvi - center for advanced radiation technology

kvi - center for advanced radiation technology

Measured and simulated

• Simulated phase-space projections of a 25 kV He¹⁺ validated by measurements

Measured and simulated

• Simulated phase-space projections of a 25 kV He¹⁺ validated by measurements

Measured and simulated

• Simulated phase-space projections of a 25 kV He¹⁺ williblatter alseys precases une offents

- Conclusion:
 - Higher order components (y|x'y'), (x|y'y') and (x|x'x') identified
 - Strengths : 5.3, 2.4 and -0.9 respectively.
 - Ion displacement in image plane due to aberrations are 26, 12 and 5 times larger than first order imaging. Image = aberration

25 kV He¹⁺ with phase-space cutoffs

kvi - center for advanced radiation technology

- How to fix the aberrations
- Method to calculate the emittance growth
- Apply this method to:
 - Add sextupoles
 - sextupoles
 - Add field lenses
 - Solenoid
 - Einzel lens

ſ

-50∟ -10

0 y-axis [mm] 36.0

33.0

□0.0 10

Method to calculate the 4-rms emittance growth

Area = 65.p mm.mrad

No difference with or without ion distribution in extraction aperture

kvi - center for advanced radiation technology

Dipole with an additional two Sextupoles

• Top view analyzing magnet

4RMS emittance 21 H¹⁺

kvi - center for advanced radiation technology

• Compensation by sextupoles and small pole face adjustement

$\Theta_1 = x_1$	%	$\Theta_1 = \mathbf{x'}_1$	%	$\Theta_1 = \gamma_1$	%	$\Theta_1 = {y'}_1$	%	ID coeff
1.01E+00	100	2.19E+00	3					(θ x)
-3.74E-08	0	9.94E-01	100					(θ x')
				-1.01	100	-1.26	2	(θ y)
				-3.36E-10	0	-0.99	100	(θ y')
-3.011	1226							(θ x'²)
-15.615	407							(θ x' ³)
36.2	944							(θ x'y'²)
				-36.3	943			(θ x'²y')
				-34.4	893			(θ y' ³)
-173	289							(θ x'²y'²)
-155	260							(θ y' ⁴)
				119	197			(θ x'³y')
				629	1044			(θ x′y′³)
1857	198							(θ x'y' ⁴)
				-3191	339			(θ x'²y'³)
				-1669	177			(θ y′⁵)

Conclusion:

1. Yes, second order is partially compensated. However large higher order terms.

Dipole with additional einzel-lens

• Top view analyzing magnet

4RMS emittance 21 kV H¹⁺

as a function of the Einzel lens potential

kvi - center for advanced radiation technology

Detail : In the image plane of the dipole remnant 4-rms emittance generated by the einzel lens.

kvi - center for advanced radiation technology

Conclusions:

- 1) Solenoid option is the best option. However 500 kA.Turn is difficult to integrate in existing setup.
- 2) Einzel lens reduces the emittance growth roughly with factor of3 in both planes.
- 3) Diameter of the Einzel lens should be larger than 70 mm diameter.
- 4) Design strategy for a low energy beam-lines to accept beams with large divergence:
 - 1) First, reduce the fringe fields as much as possible and included additional correction.
 - 2) Secondly, calculate which coefficients causes the aberrations and change the phase-space upstream such that the effect of fringe fields on the beam phase-space is minimized.

kvi - center for advanced radiation technology

• Thank you for your attention

kvi - center for advanced radiation technology

• Measurements 25 kV He¹⁺ beam

kvi - center for advanced radiation technology

• Measurements 25 kV He¹⁺ beam

kvi - center for advanced radiation technology

• Measurements 25 kV He¹⁺ beam

kvi - center for advanced radiation technology

Measurmemententerigen215 interd With+sime alegions of a 25 kV He¹⁺ beam

ECRIS 2012, Sydney, Australia

kvi - center for advanced radiation technology

Result in phase-space of the Einzel lens

('Fifth order calculation: Drift (0.3175) - Einzel (0.075) - Drift (0.3175) - Dipole - Drift (0.534) - Image plane', '8.5')

Simulated

• Theoretical model of the setup $X_1 = M_T \cdot X_0$

Transfer matrix: M_t

X1	%	X'1	%	y 1	%	Y'1	%	(x,x',y,y',δ,l) _c
0.82648	24	2.26816	5.8	0	0	0	0	100000
1.668E-06	0	1.20995	108	0	0	0	0	010000
0	0	0	0	-0.85078	9.2	-1.258137	3.8	001000
0	0	0	0	9.100E-02	35	-1.040819	110	000100
-1.3220	0	-0.84624	0	0	0	0	0	200000
-2.0211	-2	-1.6758	0.1	0	0	0	0	110000
-0.94047	33	-1.1015	3.4	0	0	0	0	020000
0	0	0	0	1.96766	0	-3.98394	0	101000
0	0	0	0	3.85987	1.5	-3.84397	0.4	011000
0	0	0	0	5.16242	2	5.65309	0.6	100100
0	0	0	0	5.34891	71	3.59906	13	010100
-3.35827	0	-5.66803	0	0	0	0	0	002000
-3.03125	3	-6.27946	0.6	0	0	0	0	001100
-2.43596	86	-3.12330	9.8	0	0	0	0	000200

X₀: KV distribution

Simulated

• Theoretical model of the setup $X_1 = M_T \cdot X_0$

Transfer matrix: M_t

$$\theta_{1} = (\theta / x)x_{0} + (\theta / x')x_{0}' + (\theta / y)y_{0} + (\theta / y')y_{0}' + (\theta / xx)x_{0}^{2}$$

+ $(\theta / xx')x_{0}x_{0}' + (\theta / x'x')x_{0}'^{2} + (\theta / xy)x_{0}y_{0} + (\theta / x'y)x_{0}'y_{0}$
+ $(\theta / xy')x_{0}y_{0}' + (\theta / x'y')x_{0}'y_{0}' + (\theta / yy)y_{0}^{2} + (\theta / yy')y_{0}y_{0}' + (\theta / y'y')y_{0}'^{2}$

X1	%	X'1	%	y 1	%	y'1	%	(x,x',y,y',δ,l) _c
0.82648	24	2.26816	5.8	0	0	0	0	100000
1.668E-06	0	1.20995	108	0	0	0	0	010000
0	0	0	0	-0.85078	9.2	-1.258137	3.8	001000
0	0	0	0	9.100E-02	35	-1.040819	110	000100
-1.3220	0	-0.84624	0	0	0	0	0	200000
-2.0211	-2	-1.6758	0.1	0	0	0	0	110000
-0.94047	33	-1.1015	3.4	0	0	0	0	020000
0	0	0	0	1.96766	0	-3.98394	0	101000
0	0	0	0	3.85987	1.5	-3.84397	0.4	011000
0	0	0	0	5.16242	2	5.65309	0.6	100100
0	0	0	0	5.34891	71	3.59906	13	010100
-3.35827	0	-5.66803	0	0	0	0	0	002000
-3.03125	3	-6.27946	0.6	0	0	0	0	001100
-2.43596	86	-3.12330	9.8	0	0	0	0	000200

X₀: KV distribution

kvi - center for advanced radiation technology

• Measured phase-space projections He²⁺ beam

 $\varepsilon_{xx'-4rms} = 387 \text{ mm.mrad}$ $\varepsilon_{yy'-4rms} = 359 \text{ mm.mrad}$

kvi - center for advanced radiation technology

• Measurements combined with simulations of a 25 kV He¹⁺ beam

kvi - center for advanced radiation technology

Dipole with an additional two quadrupoles

• Top view analyzing magnet

4RMS emittance 24.5 He¹⁺

as function of the quadrupole excitation

kvi - center for advanced radiation technology

- Possible options to fix.
- Minimize the aberration
 - Add sextupoles
 - Pole curvature
 - Add sextupoles

