

ECRIS-2014

THE 21ST INTERNATIONAL WORKSHOP ON ECR ION SOURCES

NIZHNY NOVGOROD, RUSSIA, 24-28 AUGUST 2014

High Current Proton and Deuteron Beams for Accelerators and Neutron Generators

V.A. Skalyga¹, I.V. Izotov¹, S.V. Golubev¹, A.V. Sidorov¹, S.V. Razin¹, O. Tarvainen², H. Koivisto², T. Kalvas² A.V. Maslennikova³, A.V. Strelkov⁴ email: skalyga.vadim@gmail.com

¹Institute of Applied Physics, RAS, 46 Ul`yanova st., 603950 Nizhny Novgorod, Russia ²University of Jyvaskyla, Department of Physics, P.O. Box 35 (YFL), 40500 Jyväskylä, Finland ³Nizhny Novgorod State Medical Academy, 10/1 Minina Sq., 603005, Nizhny Novgorod, Russia ⁴Joint institute for Nuclear Research, 141980, Moscow region, Dubna, Russia

Outline

- SMIS 37 ion source
- H+ & D+ beams production at SMIS 37
- Neutron generators
- Neutron production at SMIS 37
- Perspectives and plans

Gyrotron 37 GHz, 10-80 kW, 1ms/1Hz. Gasdynamic plasma confinement

- ✓ High plasma density >2*10¹³ cm⁻³
- \checkmark High collision rate -> Low plasma lifetime ~ tens of μ s
- ✓ Plasma flux at the mirror point >10 A/cm²
- \checkmark T_e ~ 20-300 eV -> close to 100% ionization
- \checkmark T_i ~ 1-5 eV + extraction in the area of low magnetic field -> excellent emittance

Beam extraction

Plasma electrode aperture diameter from 5 to 10 mm

Beam current measurements

Beam current measurements

Ion spectrum (Hydrogen, Deuterium)

Beam extraction summary

Extraction system	Faraday cup current, mA	Normalized rms emittance, $\pi \cdot mm \cdot mrad$	Extraction voltage, kV
d = 5 mm	80-140	0.06	45
d = 7 mm	300	0.18	45
d = 10 mm	500	0.07	45
	H ⁺ , D ⁺ > 94 %		
	H ₂ ⁺ , D ₂ ⁺ < 6 %		

Medicine

- Neutron radiography
- Neutron spectroscopy
- Neutron brachytherapy
- Boron-neutron capture therapy (BNCT)

α-particle free pass is close to the cell dimensions: ⁴He²⁺ (9 μm) ⁷Li³⁺ (6 μm)

 Ionization led to doublestrand break of DNA prevented further cell division

BNCT principle

 $^{10}B + n_{th} \rightarrow ^{11}B^* \rightarrow ^{7}Li (0.84 \text{ MeV}) + \alpha (1.47 \text{MeV}) + \gamma (0.48 \text{ MeV}) (94 \%)$

 $^{10}B + n_{th} \rightarrow ^{11}B^* \rightarrow ^{7}Li (1.01 \text{ MeV}) + \alpha (1.78 \text{ MeV}) (6 \%)$

Neutron sources for BNCT

- Nuclear reactors
 - High neutron flux
 - High running cost and complexity
- Accelerators
 - Satisfactory neutron flux
 - Lower cost
 - Safety
- Neutron generators
 - Low neutron flux
 - Small size, low cost
 - Easy to use

D-D and D-T neutron generators

Ice target (D₂ O)

TiD₂ target

Secondary-Ion Mass Spectrometry (SIMS) of the target

Neutron flux measurements

Results (45 keV beam energy)

Target	Neutron flux per 1 mA of D+ beam at 45 keV	Total neutron flux (300 mA of D+)
TiD ₂	2·10 ⁶	6·10 ⁸
D ₂ O	3 ⋅10 ⁶	10 ⁹

Estimations

Expected neutron flux density: > 10¹⁰ s⁻¹·cm⁻²

Future plans

- H⁺ & D⁺ beam at 100 keV
- High quality target
- Bigger target
- CW D+ beam production (24 GHz, 10 kW)
- Design of target cooling

Many thanks for your attention!