Simulation of the CERN GTS-LHC ECRIS extraction system

Ville Toivanen Giulia Bellodi, Detlef Küchler, Alessandra Lombardi, Richard Scrivens and Joshua Stafford-Haworth

BE Department, CERN, Geneva, Switzerland

25/08/2014

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

- Increasing heavy ion beam requirements of future CERN experimental programs (High Luminosity LHC)
- Linac3 performance improvement requested
 - Performance limitations not fully understood
 - Existing simulation models of Linac3 are incomplete and outdated

- Increasing heavy ion beam requirements of future CERN experimental programs (High Luminosity LHC)
- Linac3 performance improvement requested
 - Performance limitations not fully understood
 - Existing simulation models of Linac3 are incomplete and outdated

Update to a more realistic 3D multiparticle model required

- Increasing heavy ion beam requirements of future CERN experimental programs (High Luminosity LHC)
- Linac3 performance improvement requested
 - Performance limitations not fully understood
 - Existing simulation models of Linac3 are incomplete and outdated

Update to a more realistic 3D multiparticle model required

GTS-LHC ECRIS

GTS-LHC ECRIS

ECRIS is not trivial to simulate

ECRIS is not trivial to simulate

- Challenging and complex plasma conditions
- Added complication: extraction during afterglow
- IBSimu chosen for extraction simulations
 - Good results from previous ECRIS studies
 - Diverse and flexible features

ECRIS is not trivial to simulate

- Challenging and complex plasma conditions
- Added complication: extraction during afterglow
- IBSimu chosen for extraction simulations
 - Good results from previous ECRIS studies
 - Diverse and flexible features

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)
- Measured CSD during afterglow
- Cold ion population
- High plasma potential
- Full space charge (low P_{ext}, E fields, pulsed)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

- 3D model of extraction geometry
- 3D magnetic field calculated with Opera (solenoids and hexapole)

Three studied cases

Three studied cases

- 1. Tuned for ²⁰⁸Pb²⁹⁺
 - Current operational settings
 - Model goal but no beam available until 2015
- 2. Tuned for ²⁰⁸Pb²⁷⁺
 - Old operational settings
 - Existing experimental data basis for 29+ case
- 3. Tuned for ⁴⁰Ar¹¹⁺
 - Will be delivered for physics experiments in 2015
 - Currently available for experiments

Collimation matches observations

Ar case more uniform

Not imposed, produced selfconsistently

Extracted beams with LEBT model

Extracted beams with LEBT model

- 3D simulation with multiparticle tracking code PATH
- Constructed with measured properties of the beam line elements
- Realistic aperture model
- Simulations with operational LEBT settings
- LEBT model still under development
 - Limited diagnostics
 - Preliminary results

²⁰⁸Pb²⁷⁺ after spectrometer

	Profile X (mm)	Profile Y (mm)	Emitt. (x,x') (mm mrad)	Emitt. (y,y') (mm mrad)
²⁰⁸ Pb ²⁷⁺ simulated	9	11	30	28
²⁰⁸ Pb ²⁷⁺ measured	7	7	39 ± 4	29.9 ± 0.4

Note: rms values

Summary

- Extraction simulations indicate potential for extraction system improvement
 - Additional einzel lens
 - Extraction system redesign
 - Pumping chamber / beam line redesign
 - ...
- New initial beams yield relatively good match with measured beam properties in LEBT

Outlook

Outlook

- More beam diagnostics to improve the model
 - Pepperpot emittance meter from Pantechnik
- Extension of the model along Linac3
- Identify factors limiting performance
- Plan and execute improvements

