

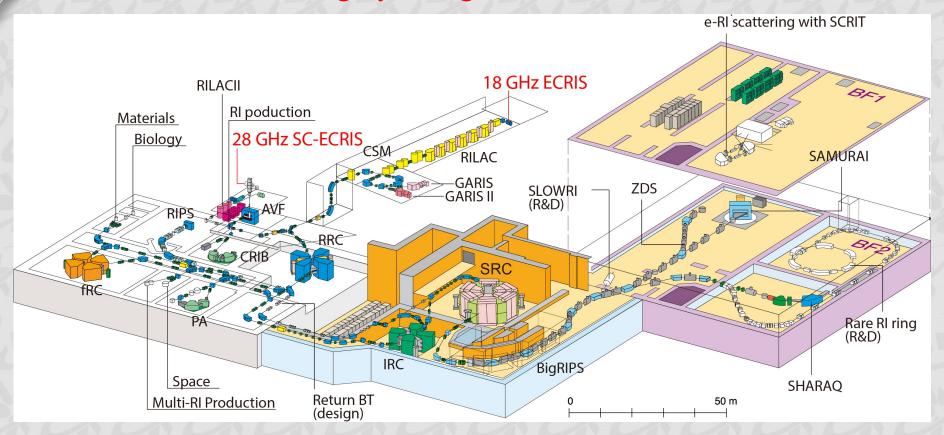
Design of a new 18 GHz ECRIS for RIKEN RIBF

Kazutaka Ozeki Yoshihide Higurashi Takahide Nakagawa Jun-ichi Ohnishi

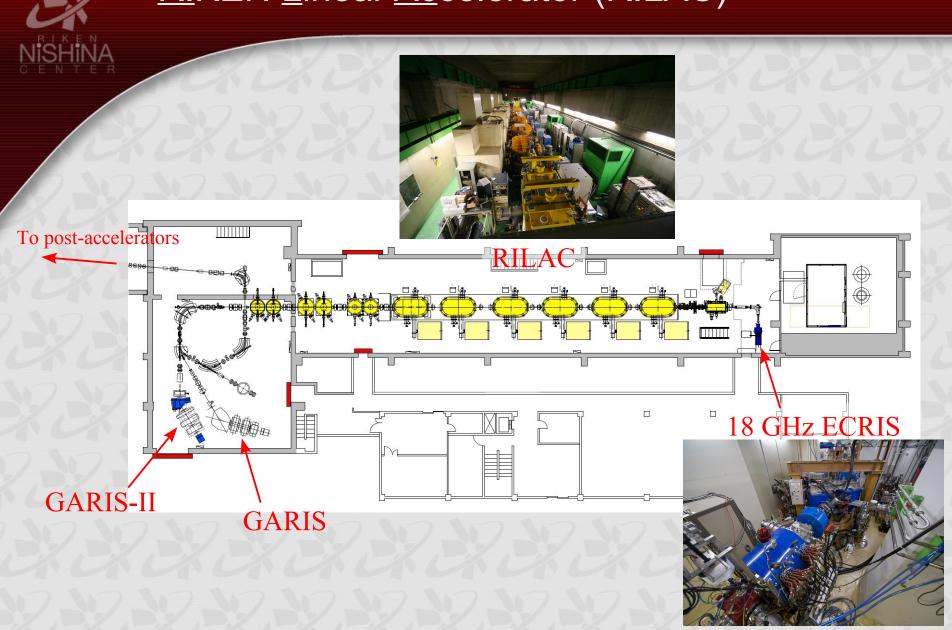
RIKEN Nishina Center for Accelerator-Based Science

NISHINA C E N T E R

Contents

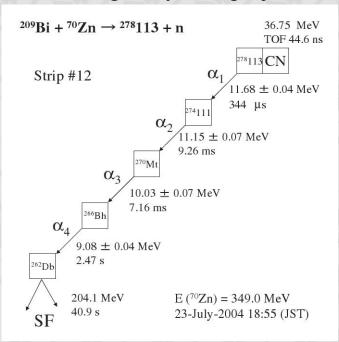

- RIKEN RIBF, RILAC
- RIKEN 18 GHz ECRIS
- Motivation for the new 18 GHz ECRIS
- Details of the new 18 GHz ECRIS
 - Mirror coil
 - Hexapole magnet
 - Plasma chamber
 - 18 GHz microwave generator
- Summary

RIKEN Radio Isotope Beam Factory (RIBF)


- Search for the new elements and isotopes
- Study of the nuclei far from stability line

Acceleration of the highly-charged intense beams of H~²³⁸U

RIKEN Linear Accelerator (RILAC)



Search for the Super-heavy elements

113th element

Decay chain observed in irradiation of ²⁰⁹Bi targets by ⁷⁰Zn projectiles

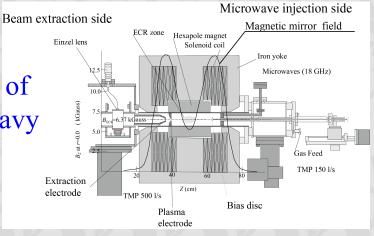
K. Morita et al., J. Phys. Soc. Jpn. 73 (2004) 2593

Gas-filled Recoil Ion Separator (GARIS)

1st event 23-Jul-2004

2nd event 2-Apr-2005

Experiment still continues...


Supply of the ⁷⁰Zn¹⁵⁺ beam over a long period

RIKEN 18 GHz ECRIS

External ion source for the RILAC

Production of medium-heavy ions

		Typical beam intensity	
40 Ar $^{8+}$ 40 Ar $^{9+}$	1 emA	Intensity (mA) No. 100 Kr Xe	
$^{84}Kr^{13+}$	0.6 emA		
$^{48}\text{Ca}^{10+}$	40 eμΑ	Beam .	
$^{70}Zn^{15+}$	30 eμΑ	10 ⁻² 10 20 30 Charge State (q)	

T. Nakagawa et al., Nucl. Instr. and Meth. B 226 (2004) 392

Main parameters of the ion source

Mirror coils				
800 A				
1.4 T				
3				
Hexapole magnet				
80 mm				
170 mm				
200 mm				
Nd-B-Fe				
1.4 T				
Microwave				
18 GHz				
1.5 kW				
Extraction				
20 kV				

Development of the low-temperature oven

Low-temperature oven for { stable supply of the ⁴⁸Ca ion beam development of other metallic beams

Motivation for the new 18 GHz ECRIS

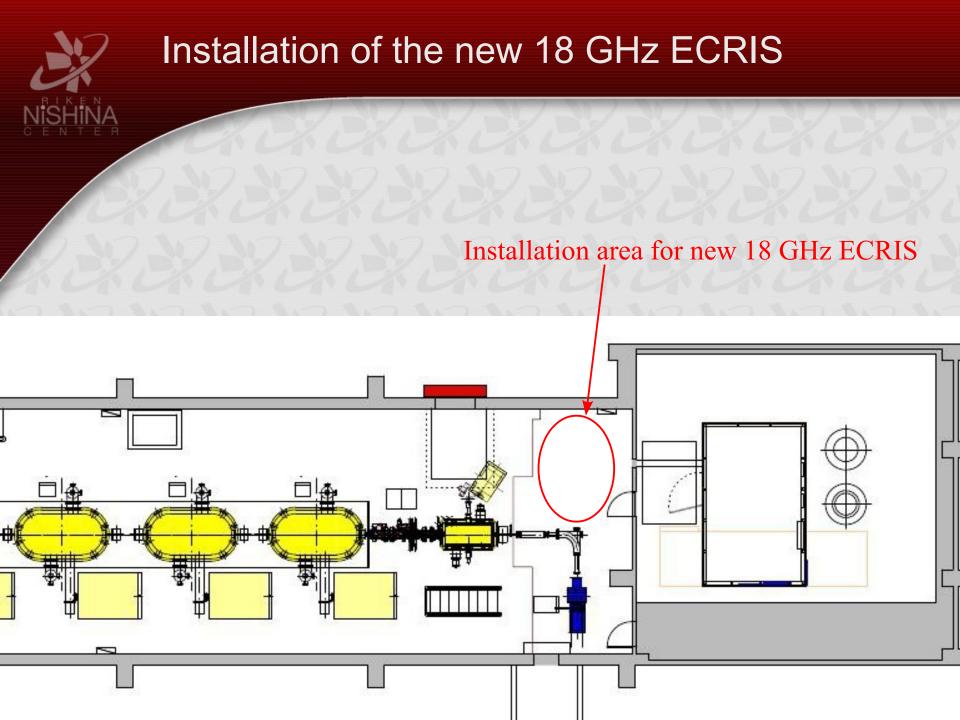
Existing operational difficulty

- · Requirements for the new beam
 - → Developments of the new beam

Difficult to satisfy both tasks

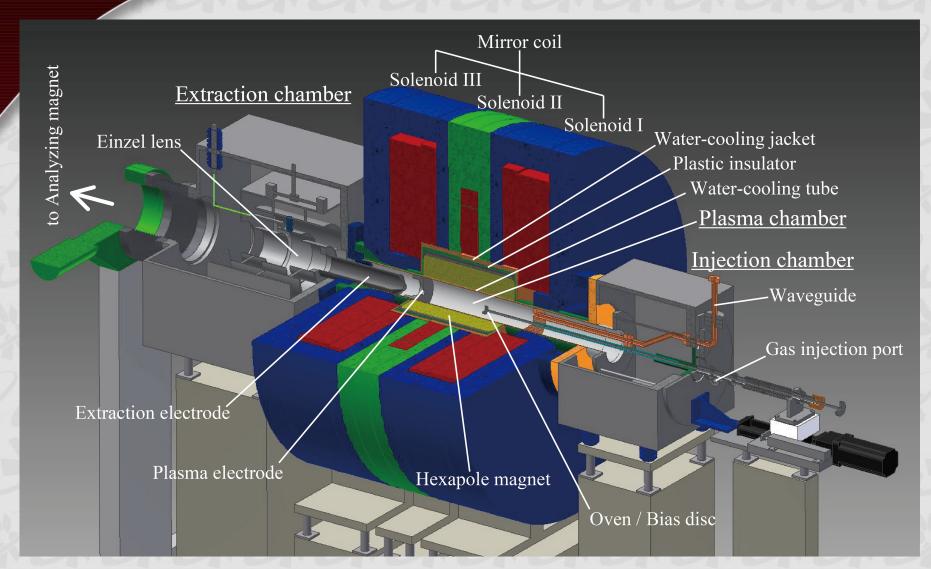
Long irradiation time (> 1 month) and high operation rate throughout the year

By equipping another ECRIS for the RILAC,

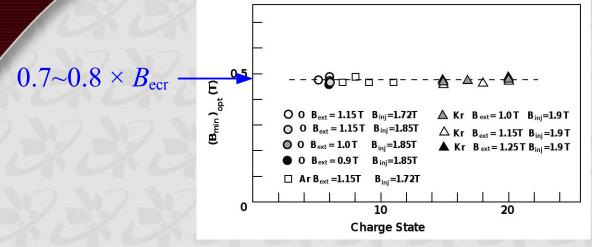

Development of the new beam \ Beam supply for the experiments

Compatible

Flexible operation of the ion sources


- Compliment or exchange of the material
 - Maintenance
 - Trouble!

Microwave of 18 GHz is sufficient to produce required intensity of medium-heavy ion beam


Overview of the new 18 GHz ECRIS

NISHINA C E N T E R

Mirror coil (1)

The optimum B_{\min} for various charge state of heavy ions

Typical magnetic field distribution along the axis

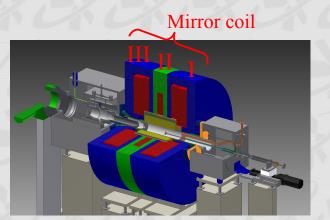
H. Arai et al., Nucl. Instr. Meth. A 491 (2002) 9

 $B_{\min} \longleftrightarrow \text{beam intensity}$

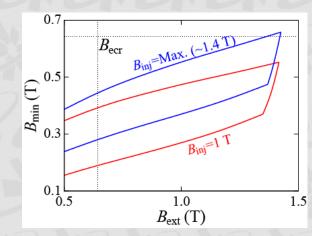
Strong correlation: B_{\min} should be kept constant

Requirements

Mirror ratio ← charge state

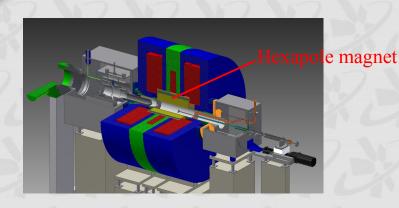

Correlation via confinement time of the plasma: Mirror ratio should be variable

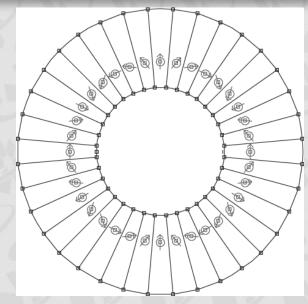
Mirror ratio should be variable for maximizing the beam intensity of required charge state


Mirror coil (2)

Three solenoid coils \downarrow Mirror ratio B_{min} Settable independently

Specifications of the Mirror coil


	Solenoids I & III	Solenoid II
Number of turns	296	60
Maximum current	660 A	300 A
Maximum voltage	105 V	10 V
Maximum intensity of the	>1.3 T	
Minimum intensity of the magnetic field <0.5 T		



Possible combination of B_{ext} and B_{min}

Hexapole magnet

Schematic drawing of the hexapole magnet. Arrows indicate the direction of magnetization

Specifications of the Hexapole magnet

Inner diameter 85 mm

Outer diameter 186 mm (magnet only)

210 mm (including holding jacket)

Length 250 mm

Material Nd-B-Fe Countermeasure against demagnetization

Number of divisions 36

Magnetic field intensity ~ 1.3 T at the inner surface of the plasma chamber (79 mm ϕ)

Plasma chamber (1) Specifications of the Plasma chamber Inner diameter 79 mm Two TMPs of ~500 L/s. $<1.0\times10^{-7}$ Torr Vacuum Maximum extraction voltage 20 kV Al chemise Waveguide + RF barrier Extraction electrode Plasma electrode Oven / Bias disc Quartz tube

Position of {Extraction electrode Oven / Bias disc Controlled remotely

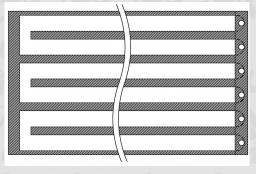
Negative voltage of the Bias disc

Re-evaporation of atoms attached to the inner wall

NISHINA C E N T E R

Plasma chamber (2)

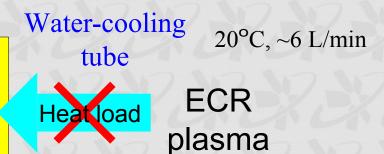
Water-cooling jacket


Plastic insulator

Hexapole magnet

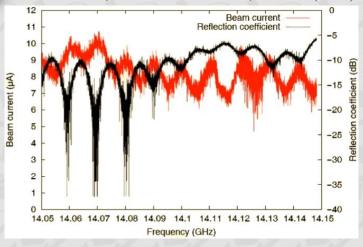
Water-cooling tube

Prevention of the demagnetization


of the hexapole magnet

Water channel of the Water-cooling tube (developed figure)

Hexaple magnet



18 GHz microwave generator (1)

"Frequency tuning" is effective to enhance the beam intensity

L. Celona et al., Rev. Sci. Instrum. 81, 02A333 (2010)

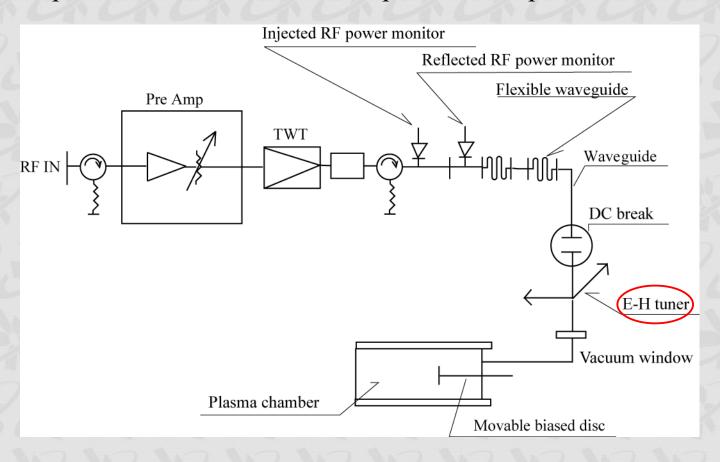
Electric field distribution on the resonance surface

ECR heating Ionization process

Microwave frequency Geometry of the plasma chamber and ECR zone	match	mismatch
Isodensity surface of the plasma	smooth	corrugated
Charge state	high	low
Brightness	high	low

Use of the TWT amplifier

Specifications of the TWT amplifier


Frequency range	17.2~18.4 GHz
Maximum power	~700 W

18 GHz microwave generator (2)

RF power line from the TWT amplifier to the plasma chamber

NISHINA CENTER

Summary

- We plan to install a new 18 GHz ECRIS for the RILAC.
 - The mirror coil consists of three solenoid coils to set the magnetic mirror ratio and B_{\min} independently.
 - We use the variable frequency microwave generator for further enhancement of the beam intensity.
- Progress status
 - Mirror coil, hexapole magnet, microwave generator
 → already prepared
 - Chambers, Electric power supply, ...
 - → under negotiation to acquire the budgets
- The low-temperature oven is under development in parallel