

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Commissioning of the ECRIS Charge State Breeder at TRIUMF

F.Ames, R. Baartman, P. Bricault, K. Jayamanna TRIUMF T. Lamy LPSC

ECRIS10, August 22-27, Grenoble, France

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

layout of the ISAC facility

Charge State breeding at ISAC

Requirements:

- M/Q < 30 with additional stripping after first acceleration stage (150 keV/u)
- M/Q < (6)7 without additional stripping
- ion velocity: 2 keV/u
- transversal emittance: \leq 30 π mm mrad

Incoming beam:

- singly charged ions continuous beam
- typical emittance < 30 π mm mrad @ 30 keV
- beam intensity: 1 ... > 10⁹ ions/sec

Charge State Breeder

modified 14.5 GHz PHOENIX ECR ion source from Pantechnik
2 step deceleration for the injection of singly charged ions
2 step acceleration scheme + Einzel lens focusing for the extraction of the highly charged ions

Commissioning of the ECRIS charge state breeder at TRIUMF

off line results

Measurements with ions from standard ISAC ion sources at test stand

Element	Mass	Charge state with maximum efficiency (A/Q)	Efficiency (%)	rise time (90%) for charge state with maximum efficiency (ms)	1+ ion source
Ar	40	8+(5)	5.5	102	ECR
Kr	84	12+(7)	6.3	401	ECR
Xe	129	17+(7.6)	4.8	432	ECR
K	39	9+(4.3)	2.1		surface
Rb	85/87	13+(6.5)	3	230	surface
Cs	133	20+(6.7)	3.5	300	surface + testsource

•emittance of Csⁿ⁺ measured < 20 π mm mrad @ 15q keV

Charge State Breeder in the ISAC mass separator room

A/Q selection 1

ion optical simulation for mass resolution after charge state breeding

A/Q selection 2

mass spectrum from ions out of the charge state breeder residual gas and plasma chamber material

August 25, 2010

Commissioning of the ECRIS charge state breeder at TRIUMF

charge breeding from test ion source

charge state distribution of stable Cs from test ion source

Efficiency for the production of Cs¹⁷⁺ as function of the potential difference between the singly charged ion source and the charge breeder **TRIUMF**

acceleration of radioactive charge bred ions

2008 November 11

measure γ radiation of ⁸⁰Rb¹⁴⁺ after charge breeding \Rightarrow 1.1 10⁵ ions per sec

radioactive beam is accompanied by ~100 nA ⁴⁰Ar⁷⁺

```
inject beam into RFQ,
accelerate to 150 A keV,
drift through DTL,
analyze energy with magnet
```

```
transmission for <sup>40</sup>Ar<sup>7+</sup> 33%
```

measure γ radiation of ⁸⁰Rb¹⁴⁺ after acceleration \Rightarrow 3.5 10⁴ ions per sec (32%)

γ spectrum after acceleration

radioactive isotopes, results

isotope	q	A/q	efficiency [%]	l (in) [1/s]	background [pA]
46K	9	5.11	0.5	4.0E4	340
64Ga	13	4.92	0.7	8.4E4	150
64Ga	14	4.57	0.75	8.4E4	210
74Br	14	5.28	3.1	3.2E7	10000
74Br	15	4.93	2.1	3.2E7	25
78Br	14	5.57	4.5	2.8E7 AlBr	20
74Kr	15	4.93	6.2	2.1E6	25
76Rb	15	5.07	1.68	3.8E6	15
80Rb	13	6.15	1.17	5.7E7	35
80Rb	14	5.71	1.1	5.7E7	70000
122Cs	19	6.42	1.1	3.1E5	6
124Cs	20	6.2	1.37	2.75E7	50

Results

20

charge state distribution of 76 Rb T_{1/2} = 36.8 s 3.8·10⁶ 76 Rb¹⁺ ions injected from Nb target with surface ion source

16

18

2.0

1.8

1.6 1.4

efficiency [%]

0.6

0.4

0.2

0.0

10

12

14

charge state

Results

charge state distribution of ⁷⁴Kr ($t_{1/2}$ = 690 s) and ⁷⁴Br ($t_{1/2}$ = 1524 s) from a ZrC target and FEBIAD ion source both ions have been injected at the same time into the breeder

background

⁷⁸Br¹⁴⁺ (1E6 ion/s) A/q = 5.57 amu/e injected as AIBr from ZrC target accelerated to 5MeV/u measured at TIGRESS detector background ≈ 20 pA

A/q	Isotopes (+/- 0.005amu/e)
5	$^{40}\text{Ar}^{8+}, ^{20}\text{Ne}^{4+}, \dots$
5.11	$^{133}Cs^{26+}$
5.14	³⁶ Ar ⁷⁺
5.2	${}^{52}Cr^{10+}, {}^{78}Kr^{15+}, {}^{130}Xe^{25+}$
5.24	84 Kr ¹⁶⁺ , 131 Xe ²⁵⁺
5.33	¹⁶ O ³⁺
5.41	${}^{54}Cr^{10+}, {}^{54}Fe^{10+}, {}^{130}Xe^{24+}$
5.44	136 Xe ²⁵⁺
5.5	$^{22}\text{Ne}^{4+}, ^{132}\text{Xe}^{24+}$
5.54	⁶¹ Ni ¹¹⁺ , ¹³³ Cs ²⁴⁺
5.6	²⁸ Si ⁵⁺ , ⁵⁶ Fe ¹⁰⁺
5.66	$^{17}\mathrm{O}^{3+}, ^{136}\mathrm{Xe}^{24+}$
5.71	$^{40}\text{Ar}^{7+}$
5.78	$^{52}\mathrm{Cr}^{9+}, ^{133}\mathrm{Cs}^{23+}$
5.83	134 Xe ²³⁺
5.88	129 Xe ²²⁺
5.90	$^{53}\mathrm{Cr}^{9+}, ^{124}\mathrm{Xe}^{21+}$
6	${}^{12}C^{2+}$, ${}^{18}O^{3+}$, ${}^{54}Cr^{9+}$, ${}^{54}Fe^{9+}$, ${}^{60}Ni^{10+}$,

- charge breeding of stable ions
- efficiency $\approx>3$ % at test stand and on line, higher for noble gases
- breeding time x 100 ms
- charge breeding of radioactive ions
- •1.4% efficiency for ¹²⁴Cs²⁰⁺ (A/q = 6.2), 1.7% efficiency for ⁷⁶Rb¹⁵⁺ A/q=5.07 6.2% for 74Kr15+
- injection of molecular ions \Rightarrow beam purification from isobars •acceleration of ${}^{80}Rb^{14+}$ and ${}^{78}BR^{14+}$

plans for the future

- continue commissioning with radioactive ions, short half lives
- further optimization of breeding and accelerator efficiency
- background reduction, more gas purification, aluminum plasma chamber
- charge breeding tests with EBIT

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you! Merci!

4004 Wesbrook Mall | Vancouver BC | Canada V6T 2A3 | Tel 604.222.1047 | Fax 604.222.1074 | www.triumf.ca