19th International Workshop on ECR Ion Sources 23–26 August , 2010, Grenoble

Development of 14.5 GHz ECR Ion Source at KAERI

Nuclear Fusion Engineering Development Division Korea Atomic Energy Research Institute

Byung-Hoon Oh, Sang-Ryul In, Kwang-Won Lee, Chang Seog Seo, Jung-Tae Jin, Dae-Sik Chang, Seong Ho Jeong, Chul-Kew Hwang

Korea Atomic Energy Research Institute

CONTENTS

- Objective of the Development
- ECRIS Design and Fabrication
- Field Measurement Results
- Results on ECR Plasma Experiments

NUCLEAR for CLEAN KOREA

 $E \neq m_0$

- Camera images
- Optical sensor and PM tube
- Bremsstrahlung X-ray
- Summary and Future Works

Our motivation of this development

A heavy ion accelerator for cancer treatment is planned in Korea.

The accelerator could be

- Cyclotron or
- Synchrotron.

The construction schedule;

- from 2010 to 2015,
- at this moment it is in conceptual design phase,
- the accelerator type will be fixed at the end of this year.

There needs ECR ion sources for multi-charged carbon beam. This work was started 3 years before as one of the base study of the project.

CONTENTS

- > Objective of the Development
- ECRIS Design and Fabrication
- Field Measurement Results
- Results on ECR Plasma Experiments

NUCLEAR for CLEAN KOREA

 $E \neq m_0$

- Camera images
- Optical sensor and PM tube
- Bremsstrahlung X-ray
- Summary and Future Works

Designed Specifications of KAERI ECRIS

한국원자력연구원 KAERI Korea Atomic Energy Research Institute

Magnet System Design

Structure of the magnet system

한국원자력연구원

Korea Atomic Energy Research Institute

KAERI

Axial field distribution

- Could be controlled by trim coil current

Beam Extraction Optics (IGUN Simulation)

Up=20022.1, Te=5.0 eV, Ui=5.0 eV, mass=12.0, Ti=0 eV, Usput=0 V 5.08E-3 A, crossover at R= 4.0, Z=5 mesh units, Debye=0.249 mesh units KAERI ECRIS extraction

 $V_{extraction} = 20 \text{ kV}, V_{einzel} = 15 \text{ kV}, D_{gap} = 24 \text{ mm}$ I _{beam} = C⁺² 0.5 mA + C⁺⁴ 0.5 mA + C⁺⁶ 0.08 mA + H⁺ 4.0 mA

The acceleration gap can be adjusted within 0~50 mm, and the accelerating voltage in 0~50 kV. The acceleration electrode is actively cooled.

- w/o deceleration grid
- einzel movement with beam extraction grid

Schematics of the assembled 14.5 GHz ECRIS

A hexapole magnet

Assembled solenoids

한국원자력연구원

Korea Atomic Energy Research Institute

KAERI

Assembled hexapole magnet (N42SH, N45H)

Beam extractor & beam lens

9

14.5 GHz RF System

 $E \neq mc$

Assembled KAERI ECRIS

After X-ray shielding (20mm lead)

BeforeX-ray shielding

CONTENTS

- > Objective of the Development
- ECRIS Design and Fabrication
- Field Measurement Results
- Results on ECR Plasma Experiments

NUCLEAR for CLEAN KOREA

 $E \neq m_0$

- Camera images
- Optical sensor and PM tube
- Bremsstrahlung X-ray
- Summary and Future Works

Structure of B_{θ} and B_z in the chamber by the hexapole

* at a 30 mm radius layer in a chamber in 5 mm and 15° resolutions

Measured B_{θ} at the chamber wall position (r = 34mm)

- The measured value (about 1.3 T) is higher than the estimated one (1.2 T).
- The difference comes from the position shift of a θ -component sensor.

한국원자력연구

Korea Atomic Energy Research Institute

KAERI

Structure of B_z and B_t component by solenoid and hexapole

 $B_t (B_t = sqrt(B_r^2 + B_{\theta}^2 + B_z^2))$ structures in different view points

* at a 30 mm radius layer in a chamber in 5 mm and 15° resolutions

Measured B_z along the beam axis with the complete set of magnet

- The measured max. value is 1.7 T at the entrance and 1.1 T at the exit.

CONTENTS

- > Objective of the Development
- ECRIS Design and Fabrication
- Field Measurement Results
- Results on ECR Plasma Experiments

NUCLEAR for CLEAN KOREA

 $E \neq mc$

- Camera images
- Optical sensor and PM tube
- Bremsstrahlung X-ray
- Summary and Future Works

ECR Plasma Images with Different Trim Coil Currents

- be seen through the beam extraction hole
- at the beam extraction electrode position

Light Strength depending on Plasma Conditions

- be seen with an optical sensor and a PM tube
- at the same position of the camera

한국원자력연구원

Korea Atomic Energy Research Institute

KAERI

Bremsstrahlung X-ray Spectrum depending on operation conditions

- at the outside of the chamber / with Na(I) detector/ without any collimator

KAERI

Korea Atomic Energy Research Institute

Estimated Electron Temperature of the ECR plasma

- based on Gaussian distribution of the high energy tail

- Looks like optimum condition is made;
 - between 250 W and 500 W of RF input,
 - and about B_m is 0.48 T.
- We need more data in order to be confirmed.

Summary and Future Works

> The fabrication of 14.5 GHz KAERI ECR ion source had been finished.

NUCLEAR for CLEAN KOREA

- > Clear ECR plasma characteristics was found during the initial test.
- > Shielding structure for high intensity X-ray has been installed recently.
- Now we will start the following experiments as a next step;
 - more experiments to check the characteristics of the ECR plasma,
 - beam extraction and mass analysis,
 - upgrade for higher current beam of multi-charged ions.
- Also new activity on Rare Isotope Accelerator (KoRIA) is started in Korea, and we are engaged in this project with SM ECR ion source.

Korea Rare Isotope Accelerator Program

한국원자력연구원 KAERI Korea Atomic Energy Research Institute

Needed Ion Sources for KoRIA at the conceptual design

NUCLEAR for CLEAN KOREA

	Needed Beam Species	Needed Beam Current	Remarks
For Driver Acc. - SC ECRIS	from p to U	< 350eµA for U ³⁵⁺ < 500eµA for Xe ²⁰⁺	 Stable ion beam Multi-charged ions
For Driver Acc. - Proton (+) IS	proton positive	< 10mA	
For Cyclotron - Proton (-) IS - or Proton H ₂ +	Proton negative H ₂ +	< 1mA < 10mA	
For Medical or Other Application - ECRIS	carbon, heavy ions	< 70µA for C6+	 Stable heavy ions Multi-charged ions
For ISOL - target IS	heavy ions	- Single Ionization - ECRIS	- Radioactive isotopes
For ISOL - Breeding Booster	heavy ions	- Charge breeding	 Radioactive isotopes ECRIS/EBIS

한국원자력연구원 Korea Atomic Energy Research Institute

KAERI

> We hope your helps with advanced technologies and experiences!

NUCLEAR for CLEAN KOREA

 $E \neq m$

Thank you very much for your attention.

