Dipole Magnet Optimization for LEBT

S Saminathan

KVI, Groningen, The Netherlands

26 Aug 2010

Outline

- Motivation
- Simulation of Ion beam extraction and transportation
- Beam profile and emittance measurements
- Dipole optimization
- Conclusion

Motivation

Cyclotron

AECRIS

7.2

AECRIS & Analyzing magnet

- RF heating: 14.1 GHz, (11- 12.5 GHz)
- $B_{inj} = 2.1 \text{ T}, B_{min} = 0.36 \text{ T}$
- $B_{ext} = 1.1 \text{ T}, B_{rad} = 0.86 \text{ T}$
- · Chamber length: 30 cm
- Chamber diameter: 7.6 cm

- Extraction aperture: 0.8 cm
- Typical analyzed beam currents for Ar⁸⁺: 500 eμA , Ne⁶⁺: 450 eμA and for
 - O⁶⁺: 650 eµA (O⁶⁺)
- Total ext. beam cur. Upto: 4 mA

Analyzing magnet (M110)

- Double focusing
- Bending radius: 400 mm
- Bending angle: 110^o
- Vertical gap: 67 mm
- Entrance pole face angle: 37^o
- Exit pole face angle: 37º

Numerical tools used for the simulations

PIC-MCC

(Initial Phase-space distribution)

GPT

(Beam extraction and transport simulation including space charge effects)

LORENTZ-3D

(3D E/M-field calculation, Beam extraction and transport simulation)

COSY-INFINITY

(Beam envelope calculation)

Ion beam(He¹⁺) extraction from AECRIS

- V. Mironov and J.P.M. Beijers, Phys. Rev. ST Accel. Beams 12, 073501 (2009)
- S. Saminathan et.al., Rev. Sci. Instrum **81**, 02B706(2010).

Beam profile and emittance behind the extraction system

Simulated (VT1)

x & y 95% RMS Emitt : 65 π mm mrad

Beam (He⁺) Transport Through Analyzing Magnet

on beam profile behind the analyzing magnet

Simulated beam emittance behind the analyzing magnet

Horizontal emittance

Vertical emittance

95% RMS Emitt : 360 π mm mrad

95% RMS Emitt: 240 π mm mrad

Measured ion(He⁺) beam emittance

95% RMS Emitt :390 π mm mrad

95% RMS Emitt: 320 π mm mrad

Pepper-pot simulation

Pepper-pot simulation

Pepper-pot simulation

Initial co-ordinates for the aberration calculation

Effect of the second-order geometric aberration

Methods to correct the image aberrations

- > By placing a correction element(Multipole) between an object and an image of an optical system. Disadvantage: Availability of space in the beam line.
- The required magnetic flux distribution can be achieved by using a <u>specially</u> designed pole shape. Disadvantage: Fine tuning of the multipole field.
- ➤ Generating the required flux distribution by a superposition of thin multipole coils (etched electronic circuit boards) with the main poles of the magnet.

Transport Simulation (2)

Vertical gap = 110 mm

VT1

VT2

Transport Simulation (1)

Vertical gap = 67 mm

Modified pole

Magnetic field at the mid-plane

Transport Simulation (3)

Modified pole

VT1

VT2

Ion beam transport through the modified dipole

Emitt : 65 π mm mrad

Emitt : 190 π mm mrad

Emitt : 150 π mm mrad

Conclusions

- The experimental observations support the model assumptions
- > Second order aberrations of the bending magnet strongly increase the effective beam emittance.
- ➤ Simulation results shows that the bending magnet with the second order correction improves the 4D phase-space distribution.

Our Team

Suresh Saminathan

Hans Beijers

Rob Kremers

Vladimir Mironov

Jan Mulder

Sytze Brandenburg

Thanks for your Attention!