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The main goal of our experiment is the
characterization of either extracted current
and X-rays under different plasma
conditions and in presence of a source of
auxiliary electrons. The effect on the quality
factor of the additional electrons on the EEDF
of the plasma has been particularly studied.
We present an electron gun based on CNTs
and working as an active electron donor for
the CAESAR ECRIS operating at LNS.
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Cold electrons contribute to plasma stability,
are of primary importance for
ionization up to high charge states, moderate
amounts of hot electrons contribute to ion
confinement, but very high energy particles
(E>300 keV) are detrimental for ECRIS
(liquid He boil-off).
Maximization of the warm component is
mandatory to ensure high ionization rates
and safe operations. Several techniques
have been investigated in the last decade in
order to increase the electron density:
Addition of auxiliary electrons can be done by
means of active or passive methods (like
alumina tubes and other techniques).
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The ECR ion source CAESAR, which operates
at INFN-LNS laboratories as injector of the K-
800 Superconducting Cyclotron since 2000.

Wave guide

The CNTs electron gun is essentially made of
three elements: a CNTs cathode obtained on a
300 mm thick silicon substrate, a 150 mm thick
mica spacer and an anodic copper grid with
quad cells of 350 mm side. CNTs eject
electrons because of the field emission effect,
i.e. quantum tunneling, which is obtained by
applying an electric field higher than 3-4 V/um.

CNTs array synthesized by Catalyst Assi

« Porous alumina grown on silicon substrate

. Cobalt nanoparticles, as catalyst,

electro-depesited within alumina pores

Multy-walls CNTs grown @ 620 C
( height 3-20 pm,@ ~ 80 um

local electric field screening effect
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150 pm thick MICA spacer
with central hole (& 4 mm)

Cu grid
(80% transparen
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Emitter density ~ 1/1000 pores to avoid

Copper GRID
150 um MICA SPACER
300 um CNT CATHODE
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The substrate for CNT syntesis:

sylicon chip (12x 12 mm; 280 um thick)
porous alumina layer (2-3 um ) with
catalyst electrodeposited in the pores
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( EFFECTS OF CNT BASED E-GUN ON CSD A INVESTIGATIONS ABOUT THE DAMPING OF THE HOT ELECTRONS
CNTs provide additional and even more important benefits to ECR plasmas: the total suppression of the
10.0 It is also interesting to note the afterglow-like hot electrons component is evident above 1000 V. The same effect is not evident when using a
< peak when the electron gun is going to switch conventional biased disk, which in addition deteriorates the performances above 350 V. This result is
3 8.0 off. The gain of current is almost 60 % and even more important than benefits provided to CSD, because the usage of CNTs-based electron guns
Pt reaches 100 % during the afterglow peak, at may be an effective and reliable technique to further improve the modern ECRIS performances without
§ 6.0 an RF power of 35 W. the strong limitation coming from hot electrons generated at large power and high frequencies.
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