Author: Jones, P.
Paper Title Page
TUPOT010 Effects of Microwave Frequency Fine Tuning on the Performance of JYFL 14 GHz ECRIS 137
 
  • V.A. Toivanen, V.P. Aho, J. Ärje, P. Jones, J.A. Kauppinen, H. A. Koivisto, P. Peura, O.A. Tarvainen
    JYFL, Jyväskylä, Finland
  • L. Celona, G. Ciavola, S. Gammino
    INFN/LNS, Catania, Italy
  • A. Galatà
    INFN/LNL, Legnaro (PD), Italy
  • D. Mascali
    CSFNSM, Catania, Italy
  • T. Ropponen
    NSCL, East Lansing, Michigan, USA
 
  Measurements have been carried out at Department of Physics, University of Jyväskylä (JYFL) to study the effects of microwave frequency fine tuning on the performance of JYFL 14 GHz electron cyclotron resonance ion source. The frequency was varied within an 85 MHz band around the normal operation frequency of 14.085 GHz. The radial bremsstrahlung emission was measured for plasma diagnostics purposes and mass separated ion beam currents extracted from the ion source were recorded at the same time. Also, beam quality studies were conducted by measuring the ion beam emittance and shape with and without enhanced space charge compensation. The obtained results are presented and possible origins of seen phenomena in measured quantities are discussed.  
poster icon Poster TUPOT010 [0.678 MB]  
 
WECOAK05 Maximum Bremsstrahlung Energy Versus Different Heating Limits 175
 
  • H. A. Koivisto, V.P. Aho, P. Jones, P. Peura, J.H. Sarén, O.A. Tarvainen, V.A. Toivanen
    JYFL, Jyväskylä, Finland
 
  A comprehensive set of bremsstrahlung measurements have been performed at JYFL (University of Jyväskylä, Department of Physics) in order to understand the parameters affecting the time evolution of electron energy. In order to extend the understanding of electron heating, a new set of measurements with the JYFL 6.4 GHz ECRIS have been initiated to further study the parameters affecting the maximum bremsstrahlung energy. In the measurements the effect of magnetic field gradient, microwave power, plasma size and gas pressure were studied. In the analysis, main focus will be given to compare the results with different theoretical electron heating limits.  
slides icon Slides WECOAK05 [0.739 MB]