Cavity BPM System for ATF2

A. Lyapin, R. Ainsworth, S. Boogert, G. Boorman, F. Cullinan, N. Joshi (JAI/RHUL, UK) M. Ross (Fermilab, USA)
A. Aryshev, Y. Honda, T. Tauchi, N. Terunuma, J. Urakawa (KEK, Japan) A.-Y. Heo, E.-S. Kim, H.-S. Kim, Y. I. Kim (KNU, Korea)
J. Frisch, D. McCormick, J. Nelson, T. Smith, G. White (SLAC, USA)

16.05.2011

A. Lyapin et al, DIPAC 2011

Royal Holloway University of London

Motivation?

- Don't really need extra motivation to do interesting work, but what is the significance of all the BPM activities?
- Large scale precision cavity BPM systems are becoming a fact
- Operational issues and stability are important

Machine	Number of cavity BPMs
LCLS	~30
European XFEL	~100
ILC	~500
CLIC	~1000

- ATF2 is the upgraded extraction line for the Accelerator Test Facility at KEK, Japan
- ATF2 BPM system mainly uses cavity BPMs, relatively large scale
- Will try to:
 - Review the system (cavities, electronics, digital processing, analysis)
 - Highlight some issues and possible solutions
 - Stability and calibration studies
 - Multibunch processing

Accelerator test facility

- Low-emittance facility, test system for 35 nm beam size next LC beam delivery system
- Very dense with instrumentation: wire scanners, OTRs, laserwires, laser interference BSM
- Relies mainly on cavity BPMs, currently ~ 40 in total

Cavity beam position monitor system

Royal Holloway University of London

A. Lyapin et al, DIPAC 2011

Cavities+Electronics

- C and S-band cylindrical cavities with 4 symmetric couplers
- Slot-coupled structure for monopole mode rejection, based on cavities previously used in NanoBPM experiment
- Tuners for adjusting x-y coupling
- Single stage image reject mixer, converting down to 20-30 MHz
- Front-end LNA in C-band, all but 3 attenuated
- Digitise at ~100 MHz

Parameter	C-band	S-band
Frequency, MHz	6422	2888
QL	~6000	~1800
<i>x-y</i> isolation, dB	45	30 (prev. 16)

C-band

S-band

Royal Holloway University of London

A. Lyapin et al, DIPAC 2011

Digital processing

- Digitised signal is processed
 - Digital IQ mixer
 - Digital filtering (Gaussian filter)
 - LO frequency tuned to IF frequency for each channel
 - Same processing for position and reference
- Amplitude and phase are sampled at one point
- Position phasor normalised by the reference to remove the charge and length dependency, and reference the phase to the beam arrival
- The real and the imaginary parts of the resulting phasor are referred to as I's and Q's (in phase and in quadrature phase with the reference)
- I and Q carry information on position, angle and tilt (separated using calibration)

Royal Holloway University of London

A. Lyapin et al, DIPAC 2011

Tuning

- The frequency of the LO signal used in digital demodulation needs to be tuned precisely to the frequency of the cavity
- Set a relatively large offset to make S/N high
- Look at the phase of the demodulated signal trying to flatten it adjusting the LO frequency
- If the signal is saturated, the sampling point slides to the right, the amplitude must be extrapolated, but the phase stays virtually the same

$$V(t) = A e^{-\Gamma t} e^{\int (\omega_{IF} - \omega_{LO})t}$$

16.05.2011

Royal Holloway University of London

- Cavity BPMs need to be calibrated in order to determine:
 - position scale
 - IQ rotation of the position signal
 - suppress angle/tilt
- Can calibrate by either:
 - moving the beam
 - may introduce angle
 - moving the BPM
 - more precise
 - need precision movers
- Calibration:
 - position changed in steps
 - I and Q averaged over several beam passes
 - fit Q vs I to get the rotation
 - fit rotated I (l'-position) to get the scale

Royal Holloway University of London

- Cavity BPMs need to be calibrated in order to determine:
 - position scale
 - IQ rotation of the position signal
 - suppress angle/tilt
- Can calibrate by either:
 - moving the beam
 - may introduce angle
 - moving the BPM
 - more precise
 - need precision movers
- Calibration:
 - position changed in steps
 - I and Q averaged over several beam passes
 - fit Q vs I to get the rotation
 - fit rotated I (l'-position) to get the scale

Royal Holloway University of London

- Cavity BPMs need to be calibrated in order to determine:
 - position scale
 - IQ rotation of the position signal
 - suppress angle/tilt
- Can calibrate by either:
 - moving the beam
 - may introduce angle
 - moving the BPM
 - more precise
 - need precision movers
- Calibration:
 - position changed in steps
 - I and Q averaged over several beam passes
 - fit Q vs I to get the rotation
 - fit rotated I (l'-position) to get the scale

Royal Holloway University of London

16.05.2011

A. Lyapin et al, DIPAC 2011

- Cavity BPMs need to be calibrated in order to determine:
 - position scale
 - IQ rotation of the position signal
 - suppress angle/tilt
- Can calibrate by either:
 - moving the beam
 - may introduce angle
 - moving the BPM
 - more precise
 - need precision movers

Ο

- Calibration:
 - position changed in steps
 - I and Q averaged over several beam passes
 - fit Q vs I to get the rotation
 - fit rotated I (l'-position) to get the scale

Royal Holloway University of London

A. Lyapin et al, DIPAC 2011

- Cavity BPMs need to be calibrated in order to determine:
 - position scale
 - IQ rotation of the position signal
 - suppress angle/tilt
- Can calibrate by either:
 - moving the beam
 - may introduce angle
 - moving the BPM

16.05.2011

- more precise
- need precision movers
- Calibration:
 - position changed in steps
 - I and Q averaged over several beam passes
 - fit Q vs I to get the rotation
 - fit rotated I (l'-position) to get the scale

Electronics gain monitoring

- Electronics gain drifts blamed for stability issues
- Send a burst of RF to the electronics behind every beam pulse
- Apply the same processing as to the beam generated signal
- Variations are small compared to jumps of the calibration constants

Scale BPM name Week 1 Week 2 Week 3 MOD10X 1800.35 - 1883.3

Calibration constants over

3 weeks(IPAC'10)

MQD10X	1800.35	-	1883.3
MQD16FF	138.3	111.9	111.1
MQD10BFF	929.9	906.4	1254

IQ rotation

BPM name	Week 1	Week 2	Week 3
MQD10X	-0.565	-	-0.676
MQD16FF	-0.814	-0.749	-0.801
MQD10BFF	-0.503	-0.427	-0.610

Royal Holloway University of London

A. Lyapin et al, DIPAC 2011

Trigger jitter/drift

- Due to small differences between the position and reference cavities, changes of the trigger timing cause changes of the phase, even when the phase is flattened along the waveform
- Measuring the beam arrival time for each beam pass and referring the sampling point to the arrival time, it's possible to compensate for this effect

Royal Holloway University of London

Jitter subtracted calibration

0 20 40 60 80 100120

x pos and tilt

0 20 40 60 80 10

y pos and till

Correlate readings from upstream BPMs to subtract the beam motion (PCA, MIA, SVD)

And then compute the calibration coefficients •

()

Effects

20 40 60 80100120

x amp and pha

KEK ATP

- Scale variation improves to $\sim 1\%$ in both x and y •
- Still need to collect more data, but may already be limited by the • movers/variations due to guads
- EPICS/EDM + Python based system enables easy remote operation •

London

Royal Holloway University of London

• • •

A. Lyapin et al, DIPAC 2011

Q amp and pha

y amp and pha

Jitter subtracted calibration

Correlate readings from upstream BPMs to subtract the beam motion (PCA, MIA, SVD)

- And then compute the calibration coefficients •
- Scale variation improves to $\sim 1\%$ in both x and y •
- Still need to collect more data, but may already be limited by the • movers/variations due to guads
- EPICS/EDM + Python based system enables easy remote operation •

London

Tsukuba

16.05.2011

A. Lyapin et al, DIPAC 2011

Royal Holloway University of London

Jitter subtracted

With jitter

Resolution as an indicator of the system performance

- SVD using a few BPMs surrounding the one of interest and calculate the residual
- Usually a high residual signals for a re-calibration
- In some cases it indicates more fundamental problems
 - Large offsets (between the BPM and quad) and consequent saturation
- This display is now an online tool for operators

Royal Holloway University of London

Resolution as an indicator of the system performance

- SVD using a few BPMs surrounding the one of interest and calculate the residual
- Usually a high residual signals for a re-calibration
- In some cases it indicates more fundamental problems
 - Large offsets (between the BPM and quad) and consequent saturation
- This display is now an online tool for operators

A. Lyapin et al, DIPAC 2011

Royal Holloway University of London

Optics model check-out

- Ultimately, want BPMs to work as a diagnostic!
- Example ATF2 optics model checks (done with the trigger time correction in)
- Scan varying one of the correctors and measure the kick at each position
- The model agrees very well with the measurement
- More importantly, the picture stays the same over 2-3 weeks

Stability scales

- We believe we identified the main sources of instabilities
- But what is the order of their importance?
- What these effects depend on?

Source of systematic	Estimate of the contribution	Driven by/connected to
Trigger variations	Phase jumps up to reverse	Precision of the trigger distribution electronics
Beam jitter	~10% scale variation	~beam size
Electronics gain	~1% scale ~1 deg phase	Complexity of the electronics and components
Temperature drifts	~1 deg/K phase	Resonant frequency

• The next thing we would like to show would be stability over ~3-4 weeks...

Japan earth quake

G. White, SLAC

- 11th March 2011, 2:46:23
- 320 km, 8 km/s gives 46 s propagation time
- Beam manually aborted

- 10-ton concrete blocks moved, cables and cable trays messed up
- Vacuum broken in several places
- Complete realignment needed
- Most problems are already fixed by KEK colleagues!
- Alignment groups are working really hard
- Operation is resuming now
- Limited by the power usage restrictions

From official KEK report

Royal Holloway University of London

A. Lyapin et al, DIPAC 2011

Multi-bunch studies

- ATF2 cavities have a decay time of ~300 ns
- Even for ILC bunches there would be some overlapping of signals
- Interested in individual bunch positions, so need to subtract
- Digitize the whole signal, process in the normal way (but usually higher BW)
- Sample the amplitudes and phases for every bunch
- Subtract as phasors propagating from previous to next

A. Lyapin et al, DIPAC 2011

Royal Holloway University of London

Multi-bunch studies

- Real data: 3 bunches with a separation of 150 ns.
- 3 mover positions
- Signal subtraction roughly evens out the amplitudes, and hence the offsets, for all 3 bunches (there is some offset between the bunches)
- Phase rotation consistent with 2*pi*(f-f_ref)
- Increased jitter for bunches 2 and 3 needs investigation

A. Lyapin et al, DIPAC 2011

Royal Holloway University of London

Multi-bunch studies (simulated)

- Simulated data: same separation time
- Parameters as close to the real data as possible
- Processed in the same way as the real data and subtracted
- Subtraction works perfectly, and no jitter increase observed!
- Are we missing something? Perhaps, some interference signals?
- Need to investigate further and need more data...

A. Lyapin et al, DIPAC 2011

N. Joshi, JAI PhD student

Summary and outlook

- ATF2 BPM system
 - Fully operational and easily expandable (at least as before the quake)
 - Main sources of instabilities identified
 - Trigger time issues fixed
 - Online resolution monitoring implemented, other techniques for monitoring the performance in development
- As soon as the ATF2 research program resumes
 - Need to check if any repairs are required
 - Providing the hardware is functional, start-up time should not exceed 2-3 days including calibrations
 - Make jitter-subtracted calibrations routine
 - Collect as much stability data as possible
 - Continue commissioning of the multibunch processing technique

