

Beam Instrumentation for X-ray FELs

Henrik Loos 05/16/2011

X-ray FEL overview

- Diagnostics requirements for X-ray FELs
- Transverse Diagnostics
- Longitudinal Diagnostics
- Summary

	Energy (GeV)	Wave length	Bunch Charge	Peak Curr.	Emit- tance	Gain length	Und. length	Rate (Hz)
LCLC	13.6	1.5 Å	0.02-1nC	3kA	.2-1 µm	3.5 m	100m	120
855-	8	1 Å	0.2nC	4kA	.7 µm	~10 m	100m	60
European XFEL	17.5	1 Å	0.1-1nC	5kA	1-2 µm	3.7 m	130m	10/ 5E6

LCLS X-Ray FEL Diagnostics Requirements

- Work from MeV to GeV range, 10s of pC to nC
 - Transverse
 - Typical $\beta \sim 10 100$ m, $\epsilon_n \sim 1 \mu$ m, beam size 10s μ m
 - Need ~10 µm resolution for beam profiles
 - Beam position $x < \sigma/10$ for stable photon beam
 - Need few µm BPM resolution
 - Straight beam orbit in undulator within few µm
 - Need sub-µm cavity BPM
 - Longitudinal
 - Typical 10⁻⁴ FEL bandwidth, energy resolution «10⁻⁴
 - Need ~10 µm energy BPM resolution for ~10 cm dispersion
 - Bunch lengths 10s fs
 - Need timing and length resolution of few fs
 - Non-intercepting/intra-bunch resolution for feedback systems

FLASH Beam Position Monitors

Courtesy N. Baboi

D. Noelle, BIW10, WECNB01

- ~70 BPMs, strip line
- 10 µm resolution
- Few button, cavity
- Electronics for 0.5 1 nC
- Upgrade to 50 pC beam

- E-XFEL BPM development
- Cavity BPM at 3.3 GHz
- 1 µm resolution
- Low Q to resolve intrabunch train position
- Upgrade plan for FLASH undulator BPMs

- Dipole mode cavity at 4.76 GHz + monopole cavity
- Shifted from main RF frequency to avoid dark current
- Measurements at SCSS test accelerator
- Position resolution < 200 nm</p>
- Timing resolution from TM₀₁₀ cavity < 25 fs</p>

H. Maesaka et al., DIPAC09, MOPD07

145 strip line type

- Charge range ~10 pC to few nC with variable attenuators
- Continuous calibration with test pulse between beam triggers
- 3 µm resolution (25 µm at 20 pC)

35 cavity type between undulators

- Dipole/monopole cavity at 11.4 GHz
- < 300 nm resolution (2 µm at 20 pC)</p>
- Bi-weekly calibrate with girder motion & beam based alignment

E. Medvedko et al., BIW 2008, TUPTPF037

Henrik Loos loos@slac.stanford.edu

Profile Monitors YAG/OTR

LCLS Profile Monitor

YAG Screens

- Powder or crystal
- Saturate ~nC/mm²
- High sensitivity

OTR Screens

- Thin AI foil or Si wafer
- Better resolution

FLASH

- 20 OTR with up to 10 µm resolution
- Matching into BCs & undulator
- COTR at high compression

LCLS

- 20 YAG & OTR, 50 10 µm resolution
- Gun commissioning, injector tune-up

LCLS OTR Screens

- Injector diagnostics
- Emittance of 10 slices at 20 pC
- COTR prevents use beyond injector
- Main dump OTR replaced with YAG

Also see S. Wesch & B. Schmidt, WEOA01

Wire Scanners

Multi shot method

- Intercept beam with thin wire
- Use beam loss monitors to measure charge profile
- FLASH wire scanners
 - Agree well with OTR screens
 - Seldom used, slow scan at 10 Hz
- E-XFEL development
 - Scan with 1 m/s within bunch train
- LCLS wire scanners
 - Main method past injector (COTR)
 - Need to correct for beam jitter
 - Synchronous acquisition of beam orbit, wire position and PMT signal

- Impose time dependent transverse kick on beam
- Phase advance 90° to screen
- Time calibration with phase scan

Henrik Loos loos@slac.stanford.edu

y (mm)

FLASH

- Resolution 20 fs temporal, 1.4.10⁻⁴ energy
- Single bunch kicker
- Straight ahead screen impeded by COTR
- Mostly screen in spectrometer used

Courtesy C. Behrens

LCLS

- Wire scanner instead of OTR
- Jitter correction imperative
- Shortest bunches ~10 fs

LCLS X-Band Transverse Deflector

X-band, 11.4GHz

Traveling Wave, length ~60 cm (Courtesy of V. Dolgashev)

- Planned after LCLS undulator
- Compared to S-Band Deflector
 - 4x frequency (11.424 GHz)
 - 2x voltage (43 MV)
 - 8x more kick
- Calibration factor of ~100 feasible
- Longitudinal phase space on main dump screen
- Obtain e-beam current profile
- Get x-ray pulse length from induced energy loss

Courtesy Y. Ding

LCLS FLASH Bunch Compression Monitor

- Coherent diffraction radiation detector
- Radiator is slit metal screen
- Optical radiation transport with GHz to THz bandwidth
- Signal from pyroelectric detector
- Fast detection resolves bunch train
- Slow & fast phase feedback for upstream accelerator structures

LCLS Bunch Length Monitor

- Coherent edge radiation from last chicane bend
- Installed at BC1 & BC2
- BLM provides only signal related to bunch length
- Absolute measurement with transverse deflecting cavity for calibration
- Noise better than 3%

- Empirical fit of signal to $(\sigma_z)^{-4/3}$
- Calculate peak current for 120
 Hz fast feedback system
- Regulate upstream linac phases

- FLASH grating spectrometer
 - Wavelength range 3 65 µm with multiple gratings
 - Bunch features of 15 fs resolved
- LCLS Prism spectrometer
 - From 0.8 39 µm with KRS-5 prism
 - Suitable for ≥1 µm bunch length

Elegant simulation courtesy Y. Ding

X-FEL Beam Instrumentation DIPAC 2011

Henrik Loos loos@slac.stanford.edu

FLASH Beam Arrival Monitor

- Beam signal from 4 button pick-up
- Laser clock with 6 fs stability
- Electro-optic modulator encodes beam signal on laser amplitude
- Fast sampling for intra-bunch train feedback
- 5 BAM installed with 5 fs resolution
- FPGA based controller board
- PID controller for amplitude correction from BAM signal
 - Latency of 30 µs due to SC RF

M. Bock et al., FEL09, WEPC66, IPAC10, WEOCMH02

Courtesy C. Behrens

LCLS Phase Cavities

LCLS FLASH Synchrotron Radiation Monitor 5

A. Wilhelm et al., DIPAC09, TUPD43

- Energy measurement with < 10⁻⁴ resolution
- ICCD for energy spread of single bunch
- Multi-anode PMT for centroid of bunch train
- 14-bit ADC at 1 MHz for bunch train resolution
- IBFB with a learning FF algorithm

Learning FF for intra-bunch energy

15

Bunch Number

10

Henrik Loos loos@slac.stanford.edu

25

30

Iterations.

20

C. Gerth et al., DIPAC09, TUPD22

−2.

é,

-4.5

5

- LCLS users request frequent energy changes
- Stable transverse & longitudinal feedbacks
- High level applications to integrate various diagnostics, feedback systems & controls
- Automatic energy change from 12 14.5 GeV with only 30% X-ray energy loss

Summary

- Diagnostics meets requirements to adequately measure beam parameters needed for X-FELs
- Reliable diagnostics available for daily operation of machine
- Commissioning tasks require more specialized diagnostics used by experts
- Issue is 2D spatial diagnostics for ultra-bright beams (COTR)
- Challenging task remains to measure <10 fs bunch lengths

- Thanks to N. Baboi, C. Behrens, K. Honkavaara & S. Schreiber at FLASH for lots of helpful information
- Thanks to Y. Ding, J. Frisch and everyone else at LCLS