Author: Bock, M.K.
Paper Title Page
MOPD33 Pickup Design for a High Resolution Bunch Arrival Time Monitor for FLASH and XFEL 122
 
  • A. Angelovski, R. Jakoby, A. Kuhl, A. Penirschke, S. Schnepp
    TU Darmstadt, Darmstadt, Germany
  • M.K. Bock, M. Bousonville, P. Gessler, H. Schlarb
    DESY, Hamburg, Germany
  • J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: Funded by the Federal Ministry of Education and Research (BMBF): 05K10RDA "Weiterentwickung eines Ankunftszeitmonitors"
The Free Electron Laser in Hamburg (FLASH) is currently equipped with four Bunch Arrival time Monitors (BAM’s) which are part of the optical synchronization system [1-2]. FLASH usually works with bunch charges of 0.2 to 1 nC, but for a variety of future experiments, the system needs to operate with bunch charges in the range of 10 to 20 pC. Below 0.2 nC the sensitivity of such a BAM scales approximately linearly with the bunch charge and therefore the system no longer fulfills the time resolution requirements for these low charges. For the low bunch charge regime operation, the bandwidth has to be increased substantially. This paper shows a new design of a high frequency button pickup that can operate in a frequency band from DC up to 40 GHz. The design criteria of the pickup are the voltage slope steepness at the zero-crossing, the maximum amplitude and the ringing of the picked-up voltage. The performance of the designed model is analyzed for fabrication tolerances and orbit variations. Some manufacturing and practical issues are discussed and solutions are offered for improving the results. A full wave simulation with CST PARTICLE STUDIO is performed in order to prove the concept.
[1] F. Loehl et. al.,“A Sub 100 fs Electron Bunch Arrival-time Monitor System for FLASH”, THOBFI01, EPAC 2006
[2] F. Loehl et. al.,“A Sub-50 Femtosecond bunch arrival time monitor system for FLASH”, WEPB15, DIPAC 2007
 
poster icon Poster MOPD33 [27.661 MB]  
 
MOPD34 Analysis of New Pickup Designs for the FLASH and XFEL Bunch Arrival Time Monitor System 125
 
  • A. Kuhl, A. Angelovski, R. Jakoby, A. Penirschke, S. Schnepp
    TU Darmstadt, Darmstadt, Germany
  • M.K. Bock, M. Bousonville, P. Gessler, H. Schlarb
    DESY, Hamburg, Germany
  • J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: Funded by the Federal Ministry of Education and Research (BMBF): 05K10RDA "Weiterentwickung eines Ankunftszeitmonitors"
The Free Electron Laser in Hamburg (FLASH) is equipped with Bunch Arrival time Monitors (BAM)[1], which provide for a time resolution of less than 10 fs for bunch charges higher than 0.2 nC. Future experiments, however, will aim at generating FEL light pulses from bunch charges of 10-20 pC. The sensitivity of the measurement system is defined by the slope of the pickup signal at the zero crossing and scales close to linear with the bunch charge. The requirements on the time resolution will no longer be fulfilled when operating at decreased bunch charges. Several designs have been developed in CST PARTICLE STUDIO®, each having an increased bandwidth larger than 40 GHz for meeting the requirements when operating at low bunch charges. Furthermore, new post-processing functions for the automatic evaluation of the signal slope and the ringing in the detected voltage signal have been developed and implemented within the CST software for defining optimization goals of the built-in optimizer for determining free design parameters. Results of the new designs are presented and compared with the current BAM pickup.
[1] M.K. Bock et.al., "Recent Developments of the Beam Arrival Time Monitor with Femtosecond Resolution at FLASH", WEOCMH02, IPAC 2010
 
poster icon Poster MOPD34 [3.112 MB]  
 
TUOB03 Next Generation Electronics based on μTCA for Beam-Diagnostics at FLASH and XFEL 294
 
  • P. Gessler, M.K. Bock, M. Bousonville, M. Felber, M. Hoffmann, T. Jezynski, T. Lamb, F. Ludwig, G. Petrosyan, L.M. Petrosyan, K. Rehlich, S. Schulz, P. Vetrov, M. Zimmer
    DESY, Hamburg, Germany
  • C. Bohm, A. Hidvégi
    Stockholm University, Stockholm, Sweden
  • K. Czuba
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • D.R. Makowski
    TUL-DMCS, Łódź, Poland
 
  Funding: This work is partly supported by IRUVX-PP an EU co-funded project under FP7 (Grant Agreement 211285).
Almost all accelerator-related diagnostic and steering systems require front-end electronic hardware and software for digitizing, synchronization, processing, controlling, and providing access to the control system. Increasingly high demands on resolution, bandwidth, stability, redundancy, low latency, real-time processing and distribution create the need for new technologies in order to fulfill those demands. For this reason, at the European XFEL and FLASH, the new, μTCA industry standard will be deployed. Over the last few years, significant achievements have been made in μTCA developments in collaboration with other research institutes and industry. In this paper, we give an overview of the required components of a typical μTCA system for diagnostics applications. The FLASH bunch arrival-time monitor will be used as an example.
 
slides icon Slides TUOB03 [9.075 MB]  
 
TUPD28 Benchmarking the Performance of the Present Bunch Arrival Time Monitors at FLASH 365
 
  • M.K. Bock, M. Bousonville, M. Felber, P. Gessler, T. Lamb, S. Ruzin, H. Schlarb, B. Schmidt, S. Schulz
    DESY, Hamburg, Germany
 
  Funding: This work is partly supported by IRUVX-PP, an EU co-funded project under FP7 (Grant Agreement 211285)
Presently, at FLASH four bunch arrival time monitors (BAM) are installed and in permanent operation. Moreover, they are incorporated in a longitudinal intra-bunch train feedback. In this paper, we present a review of the performance and the limitations of the current BAM design, based on the most recent machine studies. The detection principle of the monitor implements the electro-optical modulation of synchronised laser pulses. The RF and electro-optical front-ends are designed to be operated in a frequency band from DC up to 10 GHz. This allows for measuring the arrival time of each individual electron bunch at femtosecond resolution. The current design of the BAMs has been tested under the influence of disturbances on the arrival time measurement, such as variation of the bunch charge as well as deviation from the reference transverse bunch position. Those results will be incorporated in an upcoming design revision to upgrade the application and robustness of the BAMs.
 
 
TUPD35 Development of an Alternative, Photodiode-Based, Femtosecond Stable Detection Principle for the Link Stabilization in the Optical Synchronization Systems at FLASH and XFEL 380
 
  • T. Lamb, M.K. Bock, M. Bousonville, M. Felber, P. Gessler, F. Ludwig, S. Ruzin, H. Schlarb, B. Schmidt, S. Schulz
    DESY, Hamburg, Germany
 
  Funding: This work is partly supported by IRUVX-PP an EU co-funded project under FP7 (Grant Agreement 211285).
The fs-stable timing information in the optical synchronization system at FLASH and the upcoming European XFEL is based on the distribution of laser pulses in optical fibers. The optical length of the fibers is continuously monitored and drifts in signal propagation time are actively compensated in order to provide a phase stable pulse train at the end of the fiber link. At present, optical cross-correlation is used to measure the optical length changes. To overcome some of the disadvantages of the current scheme, a different approach for the detection of the optical fiber link length variation was developed. This new scheme uses 10GHz photodiodes to measure the amplitude modulation of harmonics created by overlapping two pulse trains. The long-term stability of the prototype of this detector over 33h was demonstrated to be below 5fs (peak-to-peak) with a rms jitter of about 0.86fs. The detection principle itself is practically insensitive to environmental influences and needs only about 10% of the optical power, compared to the optical cross-correlator.
 
 
TUPD36 Progress and Status of the Laser-based Synchronization System at FLASH 383
 
  • S. Schulz, M.K. Bock, M. Bousonville, M. Felber, P. Gessler, T. Lamb, F. Ludwig, S. Ruzin, H. Schlarb, B. Schmidt
    DESY, Hamburg, Germany
 
  Funding: This work is partly supported by IRUVX-PP an EU co-funded project under FP7 (Grant Agreement 211285).
The free-electron lasers FLASH and European XFEL demand a high timing accuracy between the electron bunches and external laser systems for both exploitation of the short VUV and X-ray pulses in time-resolved pump-probe experiments and seeded operation modes. The required precision can only be achieved with laser-based synchronization schemes. The prototype system installed at FLASH is continuously evolving and subject to improvements. In this paper, we give an overview on the present status, report on the latest developments and extensions, and discuss future challenges. Particularly, the recent move to a new type of master laser oscillator led to a significant enhancement of the robustness and reliability. Consequently, research can focus on the implementation of the electron bunch arrival time feedback, new technologies for timing distribution and integration of Ti:sapphire lasers into the optical synchronization system.