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Abstract 
In this work a new scheme for calculation of a 

cyclotron isochronous field using the previously 
calculated or measured map of the cyclotron magnetic 
field in its median plane is adduced. The calculating map 
of the cyclotron magnetic field was set by the matrix 
having the dimensions 201×181. The flutter part of the 
magnetic field obtained by subtraction of the zero 
azimuth harmonic from the magnetic field values was 
calculated in all net nodes. The magnetic rigidity value in 
the equation for the particle radius versus the angle was 
replaced by product of the mean radius and mean along 
the closed orbit magnetic field. The flutter function was 
interpolated with the help of the third order Lagrange’s 
polynomials using 16 nodes of the net. At every given 
radius with the help of the nonlinear simplex method of 
optimization one can find such value of the isochronous 
field when the particle path is enclosed with accuracy of 
10-9. The results of the fulfilled calculations for the 
cyclotron DC-110 and their comparison with results of 
other calculations are given. 

INTRODUCTION 
A scheme for determination of a cyclotron isochronous 

field using the previously calculated or measured map of 
the cyclotron magnetic field in its median plane is 
adduced. The results of the fulfilled calculations for the 
cyclotron DC-110 [1] and their comparison with results of 
other calculations are given. 

SCHEME OF CALCULATIONS 
The cyclotron DC-110 has 4 “hills” and 4 “valleys”. 

Therefore four full periods of the magnetic field ),( θrB  
are kept within the circuit ( constr = ) when πθ 20 ≤≤ . 
The calculated map of the cyclotron magnetic field in its 
median plane was set by the matrix jiQ ,  having the 
dimensions 201 × 181. The values of the flutter part 

),( jirF θ were calculated in the net nodes ( jir θ, ) by 
subtraction of the zero azimuth harmonic from the 
magnetic field values. 

The distribution of the flatter versus radius is shown in 
Fig. 1. The calculated flutter versus the angle θ for r  = 
80 cm is shown in Fig. 2. 

The following differential equation for a reference 
particle radius r [2] was used in our calculations. 
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Figure 1: Flutter function 

)(rF  when const=θ  
Figure 2: Flutter function 

)(θF  when r  = 80 cm 

 
The magnetic rigidity ρB  value in (1) was replaced by 
product of the mean radius r  and mean along the closed 
orbit magnetic field B : 

f
chr

re
cM

Z
AB

rr

BrBrBrB

p

π

ρ

2
;1

)/(1
)(;)(

2

0

2
0

=⋅⋅=

−
==

∞
∞

∞

  (2) 

Here A  is the ion atomic mass, Z  is the ion charge, pM  
is the atomic unit mass, c  is the speed of light, e  is the 
elementary charge, h  is the harmonic number and f  is 
the frequency of the cyclotron RF generator. 

As a result the isochronous magnetic field was found 
by solving the following system of equations: 
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Here the function )(θρ  defines the mean radius of the 
closed orbit )2( πρ=r . During calculation the value r  
was found by iteration with specified accuracy of 10-9. 

The function )(rB  is the varying magnetic field 
specified in the points iw  ( Ni ,...,1= ) along the radius 
where rRN extr Δ=  and rΔ  is the value of chosen radial 
step. When 0=r  then 0)( BrB = . 

The function )(rB  in the range between two points iw  
and 1+iw  was found by means of the linear interpolation: 
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The flutter function ),( θrF  was interpolated with the 
help of third order Lagrange’s polynomials using 16 
nodes of the net. Part of this net is shown in Fig. 3. 
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Figure 3: Part of the net 

The flutter part of the magnetic field in an arbitrary 
point having the coordinates },{ θr  was found using the 
values of the magnetic field in 16 neighbours nodes 
(given in the matrix jiQ , ) in the following way. At first 

the value )(θkF  was calculated on four horizontal layers 
of this part of the net. 
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Here θh  = 1 degree. It is the value of the net step. The 
final value of the magnetic field in the given point one 
can get by formula: 
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Here rh  = 5 mm is the value of the radial net step. 
The system of equations (3) was solved by Runge-

Kutta method with the step equal to 1/32 of degree. 

In calculations the initial azimuth is chosen in the 
middle of the hill. Thereby the closed orbit has a 
maximum radius maxr  at this point. The radius maxr  is 
increased in our calculation from zero up to the extraction 
radius with the step 1 mm. At every subsequent step on 
the radius maxr  one can found with the help of 
optimization algorithm (simplex method, for example) 
such value of the isochronous field )( maxrBis  when the 
particle orbit is enclosed with sufficient accuracy (10-9 in 
our calculation). During optimization process the values 
of the isochronous field at inner radii were found by 
formula (4) with values of isochronous magnetic field at 
the nodes wi obtained in the previous steps of calculation. 

To check-up the accuracy of our calculations the results 
were compared with ones obtained in [3] for +1386 Kr  
isotopes by means of Gordon’s method [2]. The 
frequency of the RF-generator f  = 15.506 MHz and 

∞r  = 12.31 m. The calculated dependences of the 
isochronous magnetic field value versus radius, inferred 
in our calculations (black curve) and in [3] (red curve) are 
shown in Fig. 4. 
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Figure 4: Isochronous magnetic field versus radius 

 
The same curves calculated up to the radius r  = 95 cm 

are shown in Fig. 5. As one can see from Fig. 4 and Fig. 5 
the curves coincide practically completely except two 
regions of radius: 90 ≤≤ r  cm and 9081 ≤≤ r  cm. 
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Figure 5: Isochronous magnetic field versus radius 

Interpolation of the function ),( θrF  by the cubic 
Lagrange’s polynomials in 16 nodes of the net (5 – 6) was 
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chosen because interpolation by linear or quadratic 
polynomials gives a calculation noise on some regions of 
the magnetic field curve connected with unstable work of 
the code (see Fig. 6). 

This instability disappeared when we used the cubic 
interpolation (see Fig. 7). The calculated curves in both 
figures 6 and 7 are shown for the interval 4025 ≤≤ r cm. 
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Figure 6: Noise on the 
calculated curve 

Figure 7: The curve without 
noise 

The oscillations on the calculated curve )(rBis that are 
shown in Fig. 7 are not already connected with unstable 
work of the code but they are connected with peculiar 

properties of the calculated flutter magnetic field map of 
the cyclotron. 

CONCLUSIONS 
The obtained results show that the suggested scheme 

for calculation of the isochronous cyclotron magnetic 
field works and gives its correct values. 
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