Advance in MEIC Cooling Studies

Yuhong Zhang

Contributors: Ya. Derbenev, D. Douglas, A. Hutton, A. Kimber, R. Li, E. Nissen, C. Tennant, H. Zhang (JLab); G. Bell, I. Pogorelov (Tech-X)

Cool'13 - International Workshop on Beam Cooling and Related Topics Murren, Switzerland, June 10-14, 2013

Outline

- 1. Introduction
- 2. MEIC Multi-Staged Cooling Scheme
- 3. ERL Circulator Cooler
- 4. Simulations & Technology Development
- 5. Proof-of-Principle Experiments
- 6. Summary

Introduction

- JLab has developed a conceptual design of a Medium energy Electron-Ion
 Collider (MEIC) based on the 12 GeV CEBAF recirculating SRF linac
- The machine design of MEIC takes advantages of
 - A high bunch repetition CW electron beam from CEBAF
 - A proven luminosity concept but new to a collider involving hadron beams
 - A new ion complex for producing high bunch repetition ion beams
- Cooling of protons/ions is essential for achieving ultra high luminosity
- MEIC design adopted a multi-staged cooling concept
 - Based on conventional electron cooling
 - Cooling at the pre-booster and the collider ring for assisting ion beam formation
 - Continuous cooling during collision to compensate IBS induce beam degradation
- A cooler based on an ERL and a circulator ring has been developed
- A test facility for this ERL-circulator cooler has been proposed

Cooling is Essential for Achieving High Luminosity

- MEIC design concept for high luminosity is based on high bunch repetition rate CW colliding beams **KEK-B** has reached
- JLab is poised to replicate the same success in an electron-ion collider:
 - A high repetition rate electron beam from CEBAF
 - A new ion complex specifically designed to match e-beam
 - Multi-phase electron cooling of ion beams

Very small bunch charge 8x smaller than KEK-B **20x smaller than HERA**

4

>2x10³⁴ /cm²/s

Beam D	Desian			KEK-B	MEIC
High repetition rate		Repetition rate	MHz	509	748.5
 Low bunc Very short 	h charge t bunch	Energy (e ⁻ /e ⁺ or p/e ⁻)	GeV	8/3.5	60/5
• Very smal	l emittance	e ⁻ /e ⁺ or p/e ⁻ per bunch	10 ¹⁰	3.3/1.4	0.42 / 2.5
		Beam current	А	1.2/1.8	0.5/3
Design	Synchrotron	Bunch length	cm	0.6	1/0.75
all β* b crossing damping		Horizontal & vertical β*	cm	56/0.56	10/2~4/0.8
		Luminosity/IP, 10 ³³	/cm ² s	20	5.6 ~ 14

IR

• Sm

Cra

Multi-Staged Cooling Scheme

ERL Circulator Cooler Concept

Design Choices

- Energy Recovery Linac (ERL)
- Compact circulator ring
- to meet design challenges
 - Large RF power (up to 81 MW)
 - Long gun lifetime (average 1.5 A)

Required technologies

- High bunch charge (2 nC) magnetized gun
- High current ERL (55 MeV, 15 to150 mA)
- Ultra fast kicker

ERL-Circulator Cooler Design

40 10	CCR Optics	
20	horach horal	
	60 10 100 120	140 36

De/Recompression arc: M56 T566 W5666	m	1.615/2.2 -3.3/4 253/250
Dechirper/Rechirper on crest energy gain	MeV	1.8
Dechirper/Rechirper	phase	90°/-90°

Longitudinal matching: short in SRF, long in CCR

Jefferson Lab

MEIC Cooler Design Parameters

- Number of turns allowed in the circulator cooler ring is primarily determined by degradation of beam quality caused by coherent synchrotron radiation (CSR), space charge and inter/intra beam heating up.
- Preliminary simulation studies have shown quality of the beam (and electron cooling efficiency) is still reasonably good after 20 to 50 turns in the circulator ring.
- This leads directly to a 20 to 50 times saving of electron currents from the source/injector and ERL.

Max/min energy of e-beam	MeV	54/11
Electrons/bunch	10 ¹⁰	1.25
bunch revolutions in CCR		~30
Current in CCR/ERL	A	1.5/0.05
Bunch repetition in CCR/ERL	MHz	750/25
CCR circumference	m	~160
Cooling section length	m	30x2
RMS Bunch length	cm	1-3
Energy spread	10-4	1-3
Solenoid field in cooling section	Т	2
Beam radius in solenoid	mm	~1
Beta-function	m	0.5
Thermal cyclotron radius	μm	2
Beam radius at cathode	mm	3
Solenoid field at cathode	KG	2
Laslett's tune shift @60 MeV		0.07
Longitudinal inter/intra beam heating	μS	200

Electron cooling

- High energy (up to 100 GeV p / 55 MeV e) \leftarrow an order of magnitude above the state-of-art
- Bunched cooling electron beam from an SRF linac
- Multi-stage
- Cooling while collisions

Electron cooler

- A magnetized photo-cathode electron gun with long life-time
- High bunch charge (2 nC) High a significant challenge in injector/ERL
- High Average current and high repetition rate
- High current ERL
- Ultra fast kicker with high repetition rate and short rise/full time
- Transporting a magnetized beam
- Collective beam effects (Coherent synchrotron radiation, space charge)
- Intra and inter beam heating
- Coupling of multiple beams (colliding beams and cooling beam)

Cooling is the No.1 priority of MEIC accelerator R&D!

Medium	Bunched
energy	e-beam
ERL	Circulator ring

Cooling Simulations

IBS growth time (BETACOOL & others)

Proton: 60 GeV, 4.16×10⁹/bunch, Lc=18.75 εⁿ=0.35 & 0.07 μm, δE/E=3×10⁻⁴

Model		B-M	Martini
Horizontal	S	20	20
Vertical	S	602	204
Longitudinal	S	28.5	28

R. Li, L. Mao, H. Zhang

2 MeV DC cooling at the pre-booster

Proton: 3 GeV, 4.16×10 ⁹ /bunch, Lc=18.75 ε ⁿ =3.15 μm, δΕ/Ε=10 ⁻³ Electron: 2.16 MeV, 3 A, B=0 or 3 kG, length=1				′5 th=10m	
		IBS	ECOOL	IBS+EC	COOL
R _H	1/s	1.37E-4	-4.77E-3	-4.64E-3	~216 s
R_{V}	1/s	4.57E-5	-4.77E-3	-4.73E-3	~211 s
R_{L}	1/s	-7.72E-6	-1.04E-2	-1.04E-2	~96 s

H. Zhang

Code	trub	BETACOOL	
Friction force	Parkhomchuk		
IBS	Gas relaxation		
Diffusion (e-p, target)	Included	NOT	
Cooling rate	Unknown	Single particle	

Jefferson Lab

Cooling Simulations (cont.)

- **Tech-X** effort on MEIC cooling simulations is funded by the DOE SBIR program, work is done in collaboration with the Jlab team
- **Tech-X** work focuses on developing a hybrid scheme:
 - Detailed dynamical friction simulations that resolve individual ion-electron collisions with VSim (Vorpal) for the MEIC cooler parameter regime
 - Coupled into Fokker-Planck type modeling of electron cooling and competing effects on macroscopic timescales with BETACOOL

"Semi-analytics" w/ modified Coulomb log The dynamical friction were calculated by numerical integration over the 3D electron velocity distribution

$$\mathbf{F}_{\parallel} = -\frac{4\pi n_e k^2}{m_e} \int_{-\infty}^{\infty} \Lambda(\mathbf{v}_{rel}) \frac{\mathbf{v}_{rel}}{|\mathbf{v}_{rel}|^3} f(\mathbf{v}_e) d^3 \mathbf{v}_e$$

with a modified Coulomb logarithm that accounts for finite-time effects

$$\Lambda_{2}(\rho_{max}, \rho_{min}, \rho_{c}, d) = \frac{1}{2} \ln \left[\left(\frac{\rho_{max}^{2} + \rho_{min}^{2}}{\rho_{min}^{2} + \rho_{c}^{2}} \right) \left(\frac{\rho_{c}^{2} + d^{2}}{\rho_{max}^{2} + d^{2}} \right) \right]$$

Where $k = Ze^2/(4\pi\epsilon_0)$, $v_{rel} = v_{ion} - v_e$, ρ_c and ρ_{min} are cutoff impact parameters in a finite time and for 90° scattering, and $\rho_{max} = d = |v_{rel}| \tau/2$

G. Bell, I. Pogorelov (Tech-X)

In progress

Eriction

- Developing an interface for coupling VSimcomputed dynamical friction data into BETACOOL
- Modifying the binary Coulomb collision algorithm in VSim (Vorpal) to work with δf-PIC macroparticles

Jetterson Lab

Beam Dynamics in an ERL-Circulator Cooler

- Particle tracking was performed for a circulating electron bunch in a CCR using Elegant
- Coherent synchrotron radiation (CSR) is included first, the space charge will be added later
- It is found the CSR causes micro-bunching
- Study of parameter dependence (bunch length & emittance aspect ratio)

Accelerator technology for ERL-CCR

- It requires an ultra fast kicker for switching bunches in/out of a CCR
- The kicker must be able to operate at a high repetition rate (25~75 MHz)
- Rise/full time must be shorter than sub ns to avoid disturbing the neighboring bunches

RF kicker

- Like an RF separator, a strip-line kicker driven by a waveform which is a superposition of multi harmonic waveforms
- Very high duty factor, especially with a small number of survivable turns.
- Low power requirements
- Requires a multi-harmonic signal amplifier
- Engineering design & proto-typing are underway

A. Hutton, A. Kimber, E. Nissen

Beam-Beam Kicker

Circulating beam energy	MeV	33
Kicking beam energy	MeV	~0.3
Repetition frequency	MHz	5 -15
Kicking angle	mrad	0.2
Kinking bunch length	cm	15~50
Kinking bunch width	cm	0.5
Bunch charge	nC	2

V. Shiltsev, NIM 1996

- A short (1~ 3 cm) target electron bunch passes through a long (15 ~ 50 cm) low-energy flat bunch at a very close distance, receiving a transverse kick
- The kicking force is $F = \frac{e\sigma_e}{2\xi_0}(1-\beta_0)$

integrating it over whole kicking bunching gives the total transverse momentum kick

 Proof-of-principle test of this fast kicker idea can be planned. Simulation studies will be initiated.

Experiment to Demonstrate Cooling with a Bunched Electron Beam

Institute of Modern Physics, Chinese Academy of Science

Medium	Bunched
energy	e-beam
ERL	Circulator ring

- Modulated the DC beam into a bunched beam with a high repetition rate by applying a pulsed voltage to the biaselectrode of the electron gun (*Hongwei Chao, IMP*)
- Replacing the existing thermionic gun by a JLab photocathode gun (Matt *Poelker, JLab*)
- Low cost, non-invasive experiment, as early as 08/2013

Phase II: adding an RF cavity for bunching the ion beams) testing a bunched electron beam to cool a bunched ion beam

A. Hutton (JLab), H. Zhao (IMP)

Energy Recovery Linac

Energy	MeV	80-200
Charge/bunch	рС	135
Average current	mA	10
Peak current	А	270
Beam power	MW	2
Energy spread	%	0.5
Normalized emittance	µm-rad	<30

- SRF ERL based FEL
- High average power, up to14 kW (*world record*)
- mid-infrared spectral region
- Extension to 250 nm in the UV is planned
- Photocathode DC injector, 10 mA class CW beam, sub-nC bunch charge
- Beam energy up to 200 MeV, energy recovery

A world leader in ERL technology!

ERL-Circulator Cooler Proof-of-Concept

Experiment at JLab FEL-ERL

Purpose

- Demonstrate the cooler design concept
- Develop/test key accelerator technologies (faster beam kickers, etc.)
- Study dynamics of the cooling electron bunches in a circulator ring

Phase 1 scope

- Using the existing ERL without new upgrade except two 180° beam lines (available at JLab)
- Supporting MEIC to deliver the high luminosity (5.6~14 x 10³³ 1/cm²/s),
- To be completed before 2016

Medium	Bunched	
energy	e-beam	
ERL	Circulator ring	

Summary

- MEIC is considered the primary future of the JLab nuclear physics program. A comprehensive design report was released in Aug. 2012
- Multi-staged (conventional) electron cooling is essential for formation and cooling of the high intensity ion beam for MEIC.
- Conceptual design of an ERL circulator-ring based electron cooler has been proposed to provide a high intensity (1.5 A) and high energy (up to 54 MeV) cooling electron beam.
- Simulation studies of MEIC electron cooling and dynamics of the cooling electron beam in ERL-CCR are in progress
- Key enabling technologies and critical RD on ERL, circulator ring, high bunch charge electron source are also discussed and planed.
- A test facility for the ERL-circulator cooler concept and proof-of-principle experiments are under development.

