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Coherent e- Cooling (CeC) is a priority for 
RHIC & the future Electron-Ion Collider

• 2007 Nuclear Science Advisory Committee (NSAC) Long Range Plan:
– recommends “…the allocation of resources to develop accelerator and detector 

technology necessary to lay the foundation for a polarized Electron-Ion Collider.”
– NSAC website:  http://www.er.doe.gov/np/nsac/index.shtml

• 2009 Electron-Ion-Collider Advisory Committee (EICAC):
– selected CeC as one of the highest accelerator R&D priorities
– EIC Collaboration website:   http://web.mit.edu/eicc

• Alternative cooling approaches
– stochastic cooling has shown great success with 100 GeV/n Au+79 in RHIC

• Blaskiewicz, Brennan and Mernick, “3D stochastic cooling in RHIC,” PRL 105, 094801 (2010).
• however, it will not work with 250 GeV protons in RHIC

– high-energy unmagnetized electron cooling could be used for 100 GeV/n Au+79

• S. Nagaitsev et al., PRL 96, 044801 (2006).    Fermilab, relativistic antiprotons, with γ~9
• A.V. Fedotov, I. Ben-Zvi, D.L. Bruhwiler, V.N. Litvinenko, A.O. Sidorin, New J. Physics 8, 283 (2006).
• Cooling rate decreases as 1/γ2 ;  too slow for 250 GeV protons

– CeC could yield six-fold luminosity increase for polarized proton collisions in RHIC
• This would help in resolving the proton spin puzzle.
• Breaks the 1/γ2 scaling of conventional e- cooling, because it does not depend on dynamical friction



Why coherent electron cooling?

• Traditional stochastic cooling does not have enough bandwidth to
cool modern-day proton beams

• Efficiency of traditional electron cooling falls as a high power of 
hadron’s energy

• Synchrotron radiation is too feeble – even at LHC energy, cooling 
time is more than 10 hours

• Optical stochastic cooling (OSC) is not suitable for cooling hadrons 
with a large range of energies and has a couple of weak points:

• Hadrons do not like to radiate or absorb photons, the process 
which OSC uses twice

• Tunability and power of laser amplifiers are limited

V.N. Litvinenko, RHIC Retreat, July 2, 2010



Amplifier of the e-beam 
modulation via High Gain FEL

Longitudinal dispersion for 
hadrons

Modulator:  region 1
(a quarter to a half of 
plasma oscillation)

Kicker:  region 2

Electron density modulation is amplified in the FEL and made into a train with duration of 
Nc ~ Lgain/λw alternating hills (high density) and valleys (low density) with period of FEL 
wavelength λ. Maximum gain for the electron density of HG FEL is ~ 103.

Economic option requires: 2aw
2 < 1 !!!

Modulator Kicker

Electrons

Hadrons

l2
l1

High gain FEL (for electrons) / Dispersion section ( for hadrons)

Coherent e- Cooling:  Economic option

Litvinenko & Derbenev, “Coherent Electron Cooling,” Phys. Rev. Lett. 102, 114801 (2009).  

V.N. Litvinenko, RHIC Retreat, July 2, 2010



Overview

• All relevant dynamics in a CeC system is linear
– modulator

• 3D anisotropic Debye shielding  of each ion (beam-frame Debye length ≈ lab frame FEL wavelength)
• the coherent density/velocity wake is typically smaller than shot noise
• there will be other non-coherent perturbations (details of real e- beam with moderate space charge)

– FEL amplifier
• high-gain FEL operates in SASE mode;  very high-frequency amplifier is critical for success
• wiggler is kept short enough to avoid saturation linear density modulation, velocity perturbations
• amplified noise plus signal from nearby ions >> coherent signal for each ion (as for stochastic cooling)

– kicker
• ion responds to fields of amplified electron density perturbation effective velocity drag
• linear perturbations of the beam-frame “plasma” evolve for ~0.5 plasma periods

• Role of theory and simulation
– the entire system is amenable to theoretical calculations

• many nice papers by V. Litvinenko, Y. Derbenev, G. Wang, Y. Hao, M. Blaskiewicz, S. Webb, others…
• the subtle coherent/resonant dynamics is assumed to be additive with noise (as for stochastic cooling)

– simulations are being used to understand 3D and non-idealized effects
• subtlety of the dynamics is numerically challenging;  requires use of special algorithms
• noise is largely understood, so we suppress/ignore noise and simulate only coherent effects
• coupling between the three systems is challenging; 

especially from the modulator to the FEL amplifier



V.N. Litvinenko, RHIC Retreat, July 2, 2010



Collaboration of BNL, 
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CeC Proof of Principle Experiment at RHIC

This is a 5-year project.
The 1st year is underway.

Key system parameters (as originally proposed)



VORPAL simulations of the modulator:  
validation against theory for a simple case

• Analytic results for e- density perturbations

− theory makes certain assumptions:
single ion, with arbitrary velocity
uniform e- density;  anisotropic temperature
o Lorentzian velocity distribution
linear plasma response;  fully 3D

• Dynamic response extends over many λD and 1/ωpe

− thermal ptcl boundary conditions are important

G. Wang and M. Blaskiewicz, Phys Rev E 78, 026413 (2008).
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Modulator simulations use δf PIC 
algorithm;  run in parallel at NERSC

• δf PIC uses macro-particles to represent deviation from a 
background equilibrium distribution
– much quieter for simulation of beam or plasma perturbations
– implemented in VORPAL for Maxwellian & Lorentzian velocities

• Maximum simulation size
– 3D domain, 40 λD on a side; 20 cells per λD ~5 x 108 cells
– 200 ptcls/cell to accurately model temp. effects ~1 x 1011 ptcls
– dt ~ (dx/vth,x) / 8;  ωpe ~ vth / 2π ~1,000 time steps
– 1 μs/ptcl/step ~30,000 processor-hours for ½ plasma period
– ~24 hours on ~1,000 proc’s



Modulator simulations are successfully validated.



Recent work and near-term plans:
more realistic modulator simulations

• Non-ideal modulator simulations
– finite e- beam size  (full transverse extent;  longitudinal slice)
– first step:  Gaussian distribution in space;  zero space charge
– 2nd step:  equilibrium distribution with space charge

constant, external focusing electric field (not realistic)
– 3rd step:  equilibrium distribution with realistic external fields

no focusing (i.e. beam converges to a waist in the FEL)

• No theory with which to check the simulations
– hence, we must benchmark different algorithms

• 1D1V Vlasov-Poisson now included in VORPAL
– successful benchmarking of 1D results with δ-f PIC
– 3D simulations are only practical with δf PIC



Comparing δf PIC, Vlasov & theory,
for Debye shielding in 1D

p. 12

• both Vlasov & δf agree w/ theory 
− δf is noisier & slower
- only δf can scale up to 3D simulations

• similar results for Gaussian beam
- space charge waves are seen
- amplitude is small at ½ plasma period

Figures taken from 
G.I. Bell et al., Proc. 
2010 PAC;  

Theory is the 1D 
version of W&B’s 3D 
calculation.

1f



• We assume that the beam is close to an equilibrium 
solution which satisfies

• phase space density
• linear external focusing field (for a Gaussian beam)

• The perturbation satisfies

where

1D Vlasov equations for the beam density
[without space charge]
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Vlasov simulation results agree well with δf PIC
(single ion in gaussian e- dist. w/ no space charge)

Black: 1/8 plasma period
Blue: 1/4 plasma period
Green: 3/8 plasma period
Red: 1/2 plasma period

• no theory available
- benchmarking Vlasov & δf was helpful

• provides confidence in δf PIC
- we can now move towards 3D



• When space charge is included, the equilibrium solution 
must also satisfy a self-consistent Poisson equation

• Can no longer be solved analytically, but numerical 
solutions are readily calculated (Reiser, 5.4.4)*
• Assume velocity distribution is Gaussian

• A uniform-density beam generates a linear defocusing electric field
where  

1D Vlasov equations for the beam density
[with space charge]
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* Martin Reiser, “Theory and Design of Charged Particle Beams”, 2008



Vlasov compares well with δf PIC
(single ion in 1D beam with space charge)

Black: 1/8 plasma period
Blue: 1/4 plasma period
Green: 3/8 plasma period
Red: 1/2 plasma period
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2D δ-f Simulations of the Modulator;  Exponential 
beam (no space charge) is similar to constant density

constant density exponential density



Coupling modulator results to FEL simulations;
being explored with multiple approaches

Please see next presentation by        Ilya Pogorelov

3D modulator simulations 
via δf PIC

3D simulations of the high-gain
SASE FEL amplifier



Coupling modulator results to FEL simulations;
being explored with multiple approaches

work in progress

3D kicker simulations via 
electrostatic PIC (beam frame)

or
electromagnetic PIC (lab frame)

3D simulations of the high-gain
SASE FEL amplifier



Lab frame simulations of the Kicker

Particles at end of FEL
GENESIS output

Particles are transferred 
via file I/O to VORPAL 

Note relation between density & vz (below), 
should maintain modulation.

Particles weighted to get correct lab-frame 
density corresponding to proposed 
experiment

z, µm

γv
z

[1
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m
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]

1.3085e10 m/s



• Longitudinal electron velocities are appropriately centered around zero.
• Phase relation between density and vz maintained.
• Transverse beam-frame velocities are ~γ times lab frame velocites, as expected. 

Beam frame simulations of the Kicker



D.Möhl, The status of stochastic cooling. Nucl. Instrum. Methods A, 391(1):164 -- 171, 1997.

• run FEL w/ bunching from ion, no 
shotnoise coherent Ez= 3.7 
kV/m

• run FEL w/ shot noise 
incoherent  Ez= : 14.3 kV/m

Kicker E-fields are solved via the Poisson 
equation & advanced w/ standard PIC



• We are simulating micro-physics of a single CeC pass
– full e- cooling simulations requires many turns

inclusion of IBS and other effects to see evolution of luminosity
detailed evolution of the ion beam phase space

– detailed VORPAL-GENESIS simulations are too slow

• Need to characterize the effective drag force for CeC
• Near term:

– run many 3D δf PIC sim’s for equilibrium beam distribution
– determine if Wang & Blaskiewicz theory is sufficiently accurate
– determine importance of beam evolution in the kicker

• Mid-term:
– study more general, realistic fields in the modulator (e.g. zero)
– complete implementation of 2D2V Vlasov for benchmarking δf

Future Plans – Enable full cooling simulations
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