MEIC and Electron Cooling

Ya. Derbenev

(Presented by Y. Zhang)

Jefferson Lab

Cool'11 Workshop Alushta, Ukraine, September 12-16, 2009

Outline

- 1. Introduction
- 2. Conceptual Design of MEIC
- 3. Formation of MEIC Ion Beams with Electron Cooling
- 4. ERL Based Circulator Electron Cooler
- 5. Future Plan and Summary

Nuclear Physics Program at JLab: Through 2025 CEBAF & 12 GeV Upgrade

- One of two primary US nuclear science research centers funded by the US DOE
- Operates the world-first high energy (above 1 GeV) SRF recirculated electron linac
- CEBAF presently delivers a 6 GeV 1.5 GHz polarized CW beam to 3 experimental halls

12 GeV CEBAF Upgrade in progress

- A \$340M upgrade for energy doubling, & a new experimental hall
- will be completed by 2015, exciting science program through 2025

Nuclear Physics Program at JLab: 2025 to 2045 Medium Energy Electron-ion Collider

Jefferson Lab

MEIC@JLab Proposal

- Add a *modern* ion complex at JLab
- Enable collisions between polarized electrons & polarized light ions or un-polarized heavy ions

Science Goal: Explore & Understand QCD

- Map spin & spatial structure of quarks & gluons in nucleons
- Discover the collective effects of gluons in atomic nuclei
- (*Emerging Themes*) Understand emergence of hadronic matter from quarks and gluons & Electro-weak interaction

Science program driven machine design

- High luminosity per detector, **100 times better than HERA**
- High polarizations (>70%) for both electron and light ions

MEIC at JLab & Electron Cooling

- Over the last decade, JLab has been developing a conceptual design of an EIC based on CEBAF
- The future science program drives the MEIC design, focusing on:
 - Medium CM energy range $\rightarrow e$: 3-11 GeV, p: 20-100 GeV, i: up to 50 GeV/u
 - High luminosity (above 10³⁴ cm⁻²s⁻¹) per detector over multiple collision points
 - High polarization (>80%) for both electrons & light ions
- The JLab EIC machine design takes full advantage of
- A high bunch repetition CW electron beam from the CEBAF
- A proved luminosity concept but new to a collider involving proton/ion beams
- A new ion complex for producing a high bunch repetition ion beams
- Staged electron cooling

rson Lab

- Assisting formation of high bunch repetition CW ion beams with short bunch (~1 cm), small emittance, high average current, however, modest bunch intensity
- Continuous beam cooling at collision mode to compensate IBS

ERL based circulator cooler ring

Designed to deliver a high current (1.5 A) and high power (85 MW) electron beam with state-of-the-art accelerator technologies

MEIC Nominal Design Parameters

		Full Acceptance		High Luminosity	
		Proton	Electron	Proton	Electron
Beam energy	GeV	60	5	60	5
Collision frequency	MHz		75	0	
Particles per bunch	10 ¹⁰	0.416	2.5	0.416	2.5
Beam Current	Α	0.5	3	0.5	3
Polarization	%	> 70	~ 80	> 70	~ 80
Energy spread	10 ⁻⁴	~ 3	7.1	~ 3	7.1
RMS bunch length	cm	10	7.5	10	7.5
Hori. & vert. emitt., normalized	µm rad	0.35/0.07	54/11	0.35/0.07	54/11
Horizontal & vertical β*	cm	10 / 2	10 / 2	4 / 0.8	4 / 0.8
Vertical beam-beam tune shift		0.014	0.03	0.014	0.03
Laslett tune shift		0.06	Very small	0.06	Very small
Distance from IP to 1 st FF quad	m	7	3.5	4.5	3.5
Luminosity per IP, 10 ³³	cm ⁻² s ⁻¹	Ę	5.6	1	4.2

Design constraints:

maximum betatron function < 2 km

maximum SC dipole field: 6 T

Jeffersol • Bunch frequency: < 1 GHz

Achieving High Luminosity: Following the Leader

KEK B-factory e+e- collider

- High bunch repetition rate (509 MHz)
- Very large bunch numbers
- Very small β^* (~6 mm)
- Very short bunch length ($\sigma_2 \sim \beta^*$)
- Modest bunch charge (~10¹⁰, 5.3 nC)
- Crab crossing of colliding beam

→ over 2x10³⁴ /cm²/s

HERA (traditional hadron collider)

- Low bunch repetition rate (10.4 MHz)
- small bunch numbers (180)
- Large β* (~700 mm)
- Long bunch length (~50 cm)
- Large bunch charge $(8.75 \cdot 10^{10}, 14 \text{ nC})$
- No crab crossing

→ 2x10³¹ /cm²/s

JLab is poised to replicate same success in electron-ion collider:

- A high repetition rate electron beam from CEBAF •
- A new ion complex (so can match e-beam)

			KEK B	MEIC	
	Repetition rate	MHz	509	750	Very small bunch
	Particles/bunch	10 ¹⁰	3.3 / 1.4	0.4 / 2.5	charge 8x smaller than KEK-B
	Bunch charge	nC	5.3 / 2.2	0.67 / 4	20x small than HERA
	Beam current	А	1.2 / 1.8	0.5/3	
	Bunch length	cm	0.6	1 / 0.75	
	Hori. & vert. β*	cm	56 / 0.56	10 / 2	
erso	Luminosity/IP	10 ³³ cm ⁻² s ⁻¹	20	5.6~14) 🔞

MEIC Ion Complex

MEIC ion complex design goal

- Be able to generate/accumulate and accelerate ion beams for collisions
- Cover all required ion species

ferson Lab

• Match time, spatial and phase space structure of the electron beam (bunch length, transverse emittance and repetition frequency)

	Length (m)	Max. energy (GeV/c)	Electron Cooling	Cooling Electron energy (MeV)	Process
SRF linac		0.285 (0.1)			
Pre-booster	~300	3 (1.2)	DC	0.054 - 0.077	Accumulation
Large booster	~1300	20 (8)			Filling (5x)
collider ring	~1300	100 (40)	Staged/Bunched	11 & 54	

* Numbers in parentheses represent energies per nucleon for heavy ions

Ion Linac & Pre-booster

on Linac

Pre-booster

Circumference	m	234
Angle at crossing	deg	75
Dispersive FODO cells (Type I & 2)		6 & 9
Triplet cells & # of matching cells		10 & 4
Minimum drift between magnets	cm	50
Injection insertion & between triplets	m	5
Beta maximum in X and Y	m	16 & 32
Maximum beam size	cm	2.3
Max. vertical beam size in dipoles	cm	0.5
Tune in X and Y		7.96 & 6.79
Transition gamma and energy		5 & 4.22
Momentum compaction		0.04

B. Erdelyi, NIU

MEIC Ion Collider Ring

Dipoles		144
Length	m	3
Bending radius	Μ	53.1
Bending Angle	deg	3.2
Field @ 60 GeV	Т	3.8
Quads		298
Length	М	0.5
Strength @ 60 GeV	T/m	92/89

Circumference	m	1340.92
Total bend angle/arc	deg	240
Figure-8 crossing angle	deg	60
Arc length / radius	m	391 / 93
Long & short straight	m	279.5 / 20
Lattice & phase advance		FODO / 60 deg
Cells in arc / straight		52 / 20
Arc/straight cell length	m	9 / 9.3
Betatron tunes (v_{x_y}, v_y)		25.501 /25.527
Momentum compaction	10 ⁻³	5.12
Transition gamma		13.97
Dispersion suppression		Adjusting quad strength

Stacking of Polarized Proton beam with an ABPIS Source

	Source	Linac	Pre-booster		Large booster	Collider ring
	ABPIS	exit	At Injection	After boost	After boost	After boost
	-1	-1	+1	+1	+1	+1
	H⁻	H⁻	H⁺	H⁺	H⁺	H⁺
MeV/u	~0	13.2	285	3000	20000	60000
			1.3 / 0.64	4.2 / 0.97	22.3 / 1	64.9 / 1
mA	2	2	2			
ms	0.5	0.5	0.22			
μC	1	1	0.44			
10 ¹²	3.05	3.05	2.75			
			1			
			0.9			
10 ¹²			2.52	2.52	2.52x 5	2.52x5
А			0.33	0.5	0.5	0.5
				Change of velocity	Change of velocity	
	MeV/u mA ms μC 10 ¹² 10 ¹²	Source ABPIS -1 -1 H ⁻ MeV/u ~0 mA 2 mA 1012 1012 1012 1012 A 1012	Source Linac ABPIS exit -1 -1 1^{-1} 1^{-1} MeV/u ~ 0 13.2 mA 2 2 mS 0.5 0.5 μ C 1 1 10^{12} 3.05 3.05 10^{12} 4 -1 10^{12} 4 -1 10^{12} 4 -1 10^{12} 4 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} -1 -1 10^{12} <	SourceLinacPre-boxABPISexitAt Injection -1 -1 $+1$ -1 -1 $+1$ H^+ H^+ H^+ MeV/u ~ 0 13.2 285 mA222ms 0.5 0.5 0.22 μ C11 0.44 10^{12} 3.05 3.05 2.75 10^{12} 1 1 0.9 10^{12} -1 0.9 0.33 A -1 -1 0.33	Source Linac Pre-boster ABPIS exit At Injection After boost -1 -1 +1 +1 H ⁻ H ⁺ H ⁺ H ⁺ MeV/u ~ 0 13.2 285 3000 mA 2 2 3000 4.2 / 0.97 mA 2 2 2 4.2 / 0.97 mA 2 2 2 1 mA 1 0.44 4.2 / 0.97 mA 3.05 0.22 1 - μ C 1 0.444 - - 10 ¹² 3.05 3.05 2.755 - - 10 ¹² 3.05 3.05 2.52 2.52 - A I I 0.33 0.5 - 10 ¹² I I I I I I I I I I I I I I	SourceLinacPre-bosterLarge boosterABPISexitAt InjectionAfter boostAfter boost-1-1+1+1+1HH+H+H+H+MeV/u ~ 0 13.2285300020000MeV/u ~ 0 13.2285300020000Max22222mA22222ms0.50.50.2211 μ^{C} 110.4411 10^{12} 3.053.052.75511 10^{12} 10.9111 10^{12} I10.330.50.5AI0.330.50.50.5AII0.330.50.5AIII0.330.5AIIIIIII0.330.50.5AII

Jefferson Lab

Stacking of Fully Stripped Lead Ions with an ECR Source

		Source	Linac	Pre-booster		Larger booster		Collider ring
		ECR	After stripper	At Injection	After boost	Stripping before injection	After Boost	After boost
Charge status		30	67	67	67	82	82	82
		²⁰⁸ Pb ³⁰⁺	²⁰⁸ Pb ⁶⁷⁺	²⁰⁸ Pb ⁶⁷⁺	²⁰⁸ Pb ⁶⁷⁺	²⁰⁸ Pb ⁸²⁺	²⁰⁸ Pb ⁸²⁺	²⁰⁸ Pb ⁸²⁺
Kinetic energy	MeV/u	~0	13.2	100	670	670	7885	23653
γ				1.11	1.71	1.71	9.4	26.2
β				0.43	0.81	0.81	0.99	1
Velocity boost					1.88		1.22	1
Pulse current	mA	.5	0.1					
Pulse length	ms	0.25	0.25					
Charge per pulse	μC	0.125	0.025					
ions per pulse	10 ¹⁰	1.664	0.332					
Number of pulses				28				
efficiency			0.2	0.7		0.75		
Total stored ions	10 ¹⁰			4.5	4.5	3.375x5	3.375x5	3.375x5
Stored current	А			0.26	0.5	0.447	0.54	0.54
Reason of current change			stripping	Multi-pulse injection	Change of velocity	stripping	Change of velocity	

Cooling in Ion Collider Ring

- Initial cooling after ions injected into the collider ring for reduction of longitudinal emittance before acceleration
- After boost & re-bunching, cooling for reaching design values of beam parameters
- Continuous cooling during collision for suppressing IBS, maintaining luminosity lifetime

		Initial	after boost	Colliding Mode
Energy	GeV/MeV	15 / 8.15	60 / 32.67	60 / 32.67
proton/electron beam current	А	0.5 / 1.5	0.5 / 1.5	0.5 / 1.5
Particles/Bunch	10 ¹⁰	0.416 / 2	0.416 / 2	0.416 / 2
Bunch length	mm	(coasted)	10 / 20~30	10 / 20~30
Momentum spread	10-4	10 / 2	5 / 2	3 / 2
Hori. & vert. emittance, norm.	μm	4 / 4		0.35 / 0.07
Laslett's tune shift (proton)		0.002	0.005	0.06

In collision mode of MEIC, 60 GeV proton

		formula		Long.	Hori.	Vert.	
	IBS	Piwinski	S	66	86		
	IBS	Martini (BetaCool)	S	50	100	1923	
_	Cooling	Derbenev	S		~24		
Je	enerson Lab						

BetaCool Simulations

Low Energy DC Electron Cooler for MEIC Pre-booster

What we need for MEIC pre-booster for assisting accumulation:

- A conventional DC electron cooler
- Ion energy from 100 MeV/u (lead ion) to 145 MeV/u light ions
- Electron energy is 54 to 77 keV

Technology is mature & successfully demonstrated in many facilities

Our collaborator at ANL & NIU. will lead an initial conceptual design

COSY electron cooler

HIRFL-CSR electron cooler @ IMP, Lanzhou

High Energy e-Cooler for Collider Ring

Design Requirements and Challenges

- Electron beam current
 - up to 1.5 A CW beam at 750 MHz repetition rate
 - About 2 nC bunch charge (possible space charge issue at low energy)
 - About 173 kC/day from source (state-of-art photo-cathode source ~0.2 kC/day)
- Energy of cooling electron beam in MEIC
 - up to 10.8 MeV for cooling injection energy (20 GeV/c)
 - up to 54 MeV for cooling top proton energy (100 GeV/c)
- Beam power
 - Need 16 to 81 MW for cooling 20 to 100 GeV/c protons

Design Choice: ERL Based Circulator Cooler (ERL-CCR)

- Must be a RF Linac for accelerating electron beam
- Must be Energy Recovery SRF Linac (ERL) to solve RF power problem
- Must be Circulator ring (CCR) for reducing average current from source/ERL

ERL-CCR can provide the required high cooling current while consuming fairly low RF power!

Other option (thermionic gun + circulator ring) also under evaluation **ISA**

MEIC Electron Cooler Design Parameters

- Number of turns in circulator cooler ring is determined by degradation of electron beam quality caused by inter/intra beam heating up and space charge effect.
- Space charge effect could be a leading issue when electron beam energy is low.
- It is estimated that beam quality (as well as cooling efficiency) is still good enough after 100 to 300 turns in circulator ring.
- This leads directly to a 100 to 300 times saving of electron currents from the source/injector and ERL.

Max/min energy of e-beam	MeV	54/11
Electrons/bunch	10 ¹⁰	1.25
bunch revolutions in CCR		~100
Current in CCR/ERL	A	1.5/0.015
Bunch repetition in CCR/ERL	MHz	750/7.5
CCR circumference	m	~80
Cooling section length	m	15x2
Circulation duration	μS	27
RMS Bunch length	cm	1-3
Energy spread	10-4	1-3
Solenoid field in cooling section	Т	2
Beam radius in solenoid	mm	~1
Beta-function	m	0.5
Thermal cyclotron radius	μm	2
Beam radius at cathode	mm	3
Solenoid field at cathode	KG	2
Laslett's tune shift @60 MeV		0.07
Longitudinal inter/intra beam heating	μS	200

Technology: Electron Source/Injector

- ELIC CCR driving injector
 - 15 mA@7.5 MHz, up to 54 MeV energy
 - 2 nC bunch charge, magnetized
- Challenges
 - Source life time: 1.7 kC/day (state-of-art is 0.2 kC/day)
 - \rightarrow source R&D, & exploiting possibility of increasing evolutions in CCR
- Conceptual design
 - High current/brightness source/injector is a key issue of ERL based light source applications, much R&D has been done
 - We adopt light source injector as a baseline design of CCR driving injector
- Beam qualities should satisfy electron cooling requirements (based on previous computer simulations/optimization)
- Bunch compression may be needed.

Technology: Energy Recovery Linac

Energy	MeV	80-200
Charge/bunch	рС	135
Average current	mA	10
Peak current	А	270
Beam power	MW	2
Energy spread	%	0.5
Normalized emittance	µm-rad	<30

Jefferson Lab

- SRF ERL based FEL
- High average power, up to14 kW (world record)
- mid-infrared spectral region
- Extension to 250 nm in the UV is planned
- Photocathode DC injector, 10 mA class CW beam, sub-nC bunch charge
- Beam energy up to 200 MeV, energy recovery
- Next proposal: 100kW average power, 100
 mA CW beam. ERL, nC-class bunch charge

JLab is a world leader in ERL technology!

Technology: Circulator Ring

Kicker Parameter

energy	MeV	54
Kick angle		0.04
Integrated BDL	GM	400
Frequency BW	GHz	2
Kicker aperture	cm	2
Repetition Rate	MHz	1.67
Power	kW	13

Bunch In/out kicking Synchronization

- An ultra fast kicker switches electron bunches in and out circulator ring.
- Deflecting angle should be large enough to separate outgoing bunches from circulating bunches and be further deflected by a dipole
- Duration of kicking should be less than one bunch spacing (~1/750MHz = 1.3 ns)

- Bunch spacing depends on beam energy. There is about 1.8 mm difference when energy is boosted from 20 to 100 GeV/c
- A 10 m dog-lag lattice or loops in arc must be introduced to ensure electron-ion synchronization at cooling section.
- Maximum deflecting angle is 13°, providing total 26cm path length adjustment.

Ultra fast kicker may not be required if a gap of bunch train is introduced in the circulator cooler

Technology: Ultra-Fast Kicker

Beam-beam kicker

Circulating beam energy	MeV	33
Kicking beam energy	MeV	~0.3
Repetition frequency	MHz	5 -15
Kicking angle	mrad	0.2
Kinking bunch length	cm	15~50
Kinking bunch width	cm	0.5
Bunch charge	nC	2

V. Shiltsev, NIM 1996

- A short (1~ 3 cm) target electron bunch passes through a long (15 ~ 50 cm) low-energy flat bunch at a very close distance, receiving a transverse kick
- The kicking force is $F = \frac{e\sigma_e}{2\xi_0}(1-\beta_0)$

integrating it over whole kicking bunching gives the total transverse momentum kick

• Proof-of-principle test of this fast kicker idea can be planned. Simulation studies will be initiated.

MEIC EC R&D Challenges

Electron Cooling

Beyond the state-of-art

- Much higher energy, up to 100 GeV/u
- Cooling of a bunched beam
- Continuous cooling during collisions

ERL based Circulator Cooler

Also beyond the state-of-art

- High current from source (lifetime)
- Linac instead of electrostatic machine
- High average current ERL (BBU)
- Two cooling channels

Beam Dynamics

erson Lab

Reuse of a cooling bunch hundred times introducing many instability issuesElectron beam stabilities

Long term space charge effect Coupled beam instabilities

JLab is seeking collaborations with world experts in electron cooling.

JLab EC Study Group

JLab staffs and two new postdocs will work on design and R&D, focusing on

- Electron cooling simulations
- Circulator Cooler design and beam dynamics in cooler

Aiming for a design report

(by 2013)

Design Report Outline

- Introduction
- Electron Cooling Concept for MEIC
- MEIC Electron Cooling Simulations
- ERL Based Circulator Cooler
 - Electron Source/Injector
 - Energy Recovery Linac
 - Circulator Ring
 - Cooling Channel
- Beam Dynamics in Circulator Cooler
 - Single Beam Effect
 - Coupled Beam Effect
- Technical Design and R&D
 - Electron Source and Lifetime
 - SRF linac
 - Magnets, Solenoids and Kicker
- Conclusion

Summary

- MEIC is considered a primary future of JLab nuclear physics program. It promises to accelerate a wide variety of ions to collide with electrons beam with a CM energy range up to 65 GeV
- MEIC can reach up to 1.4x10³⁴ cm⁻²s⁻¹ luminosity for e-p collisions based on a luminosity concept of high bunch repetition CW beams
- Electron cooling is essential for forming (through stacking & accumulating) and cooling of the high intensity ion beam for MEIC.
- Conceptual design of an ERL circulator-ring based electron cooler has been proposed to provide high intensity (1.5 A) and high energy (up to 54 MeV) cooling electron beam.
- Key enabling technologies and critical RD on ERL, circulator ring, high bunch charge electron source are also discussed and planed.
- A conceptual design report will be produced by 2013

MEIC Accelerator Design Study Group

S. Ahmed, A. Bogacz, Ya. Derbenev, A. Hutton, G. Krafft, R. Li, F. Lin, V. Morozov, E. Nissen, F. Pilat, R. Rimmer, T. Satogata, M. Spata, B. Terzić, M. Tiefenback, H. Wang, B. Yunn, Y. Zhang --- Jefferson Lab

J. Delayen, S. DeSilva, H. Sayed, -- Old Dominion University

P. Chevtsov, H. Sayed, -- PSI

M. Sullivan, -- Stanford Linac Accelerator Laboratory

S. Manikonda, P. Ostroumov, -- Argonne National Laboratory

S. Abeyratne, B. Erdelyi, -- Northern Illinos University

V. Dudnikov, F. Marhauser, R. Johnson, -- Muons, Inc

Kondratenko, -- STL "Zaryad", Novosibirsk, Russian Federation

D. barber, -- DESY

son Lab

Y. Kim -- Idaho State University

Backup Slides

Advanced Concepts of Electron Cooling

Staged cooling

- Start (longitudinal) electron cooling at injection energy in collider ring
- Continue electron cooling after acceleration to high energy

Sweep cooling

- After transverse stochastic cooling, ion beam has a small transverse temperature but large longitudinal one.
- Use sweep cooling to gain a factor of longitudinal cooling time

Dispersive cooling

 compensates for lack of transverse cooling rate at high energies due to large transverse velocity spread compared to the longitudinal (in rest frame) caused by IBS

• Flat beam cooling (for high energies)

- based on flattening ion beam by reduction of coupling around the ring
- IBS rate at equilibrium reduced compared to cooling rate
- Matched cooling (low energies)
 - based on use of circular modes optics of ions matched with solenoid of cooling section
 - separates cooling of beam temperature from cooling (round) beam area
 - results in removal temperature limit due to space charge (strong reduction of achievable 4D emittance)

Flat-to-Round Beam Transform and Reduction of Space Charge

- Flat colliding ion beam and space charge
 - Colliding ion beam should be flat at interaction point in order to match flat electron beam (due to synchrotron radiation)
 - Space charge tune shift is a leading limiting factor for low energy ion beam, and it further effect luminosity of the collider
 - Flat beam enhances space charge tune-shift . i.e., Laslett tune-shift is determined by smaller transverse dimension
- Luminosity optimization: flat-to-round transform if colliding ion beam can be arranged as
 - flat at interaction point \rightarrow matching flat electron beam
 - Round in the storage
 - maintaining large transverse beam area for overcoming space charge

Technical feasibility

- circular (100% coupled) optics (ring) under matched cooling
- Special adapters to converting round beam to flat beam and back to round beam at collision point

