A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   U   V   W   X   Y   Z  

Lorentz, B.

Paper Title Page
MOIO04 Beam Cooling at HESR in the FAIR Project  
 
  • D. Prasuhn, J. Dietrich, A. Lehrach, B. Lorentz, R. Maier, R. Stassen, H. Stockhorst
    FZJ, Jülich
 
  The High Energy Storage Ring (HESR) at the FAIR accelerator facility in Darmstadt will accumulate and accelerate anti-protons in the energy range between 1.5 GeV/c and 15 GeV/c. The design is optimized to fulfill the requirements of the internal experiment PANDA. For accumulation and to fulfill the demanding requirements of the experiment concerning momentum spread, and for the required long beam lifetime both electron and stochastic cooling are necessary. Simulation results and prototype measurements of the stochastic cooling equipment and simulations of the high energy electron cooling concept will be presented.  
slides icon Slides  
TUPS03 Closed Orbit Correction in 2 MeV Electron Cooler Section at COSY-Juelich 92
 
  • L. J. Mao, J. Dietrich, V. Kamerdzhiev, B. Lorentz, H.-J. Stein
    FZJ, Jülich
 
  A 2 MeV magnetized electron cooling system will be installed in COSY to boost the luminosity for future high density internal target experiments. For an effective electron cooling, the proton beam and electron beam have to overlap coaxially, it lead to the necessity of a good orbit correction in cooler section. Since the toroid magnets, the proton beam orbit distortion is anti-symmetric in horizontal plane. With steerers at each side of cooler, the proton beam can be made coaxial in the cooler and the deflection can be compensated. The distortion caused by bending coils in toroid is symmetric in vertical plane. A four-bump method is suggested for correction. Using the magnetic field data measured in BINP, we calculated the orbit distortion of proton beam at injection energy, and investigated the scheme of closed orbit correction. The simulation of orbit distortion and result of the correction are presented in this paper.