Diagnostics for Physics Applications at SPEAR3

J. Sebek, J. Corbett, S. Gierman, X. Huang, J. Safranek, K. Tian SSRL/SLAC

April 16, 2012

SPEAR Overview

- SPEAR storage ring
 - 3 GeV synchrotron light source
 - 200 mA operation; 500 mA operation to begin within the coming year
 - 234 m circumference
 - Beam sizes
 - 10 nm rad emittance
 - $\sigma_V = 30 \,\mu\text{m}$
 - $\sigma_{\tau} = 17 \, \mathrm{ps}$ (normal mode)
 - $\sigma_{\tau} = 3 \, \text{ps} \, (\text{low } \alpha \, \text{mode})$
 - RF System
 - Copy of PEP-II RF system
 - $f_{RF} = 476.316 \,\text{MHz}$
 - h = 372
 - $h_{IF} = 13$

Single-Turn BPM System

- Detect signal at $f_{RF} = 476.316 \,\mathrm{MHz}$
- Mix down to $f_{IF} = 16.646 \,\mathrm{MHz}$
 - Improves phase resolution by factor 372/13
 - Easier to synthesize desired analog band pass filters
- Digitize signal
- Perform "single turn FFT" on data
- Amplitude of complex signal gives transverse beam position
 - Betatron motion produces amplitude oscillations
- Phase of complex signal gives longitudinal beam position
 - Synchrotron motion produces phase oscillations
- Can trigger on injection to measure injected pulses

Optical Diagnostics

- Fast gated camera
 - Roper Pi-Max
 - Gating down to 2 ns
 - Measures transverse distribution of single bunch
- Streak camera
 - Hamamatsu synchroscan
 - 3 ps resolution
 - Measures longitudinal distribution of single bunch
- Delay generator after injection trigger allows cameras to sample evolution of injected signal on successive injection cycles

Injection Coupling Studies

- Injection septum caused skew coupling that transferred horizontal injection kick into vertical plane
- Measured the strength of the coupling to specify design of multipole corrector
- Multipole corrector reduced coupling by an order of magnitude

Vertical oscillations before corrector installation

Vertical oscillation after corrector installation

Injection Transverse Phase Space Matching

Motivation

- Phase space distribution of injected beam determined by
 - Lattice function in Booster
 - Lattice function in Booster to SPEAR transport line
- Phase space distribution in SPEAR determined by SPEAR lattice
- Phase space of injected beam determines "initial conditions" for SPEAR lattice
- Want these initial conditions to "match" to minimize quadrupolar oscillations of injected beam
 - Maximizes capture of injected beam
- Gated camera images sample sequence of stored bunches at increasing delays after injection
- Dipole (betatron) oscillation is expected

Injection Transverse Phase Space Matching

Mismatched Transverse Initial Conditions

 Quadrupole oscillation shows mismatch of injected beam phase space to ring lattice function

Injection Transverse Phase Space Matching

Matched Transverse Initial Condtions

• Correcting injection lattice eliminates quadrupole oscillations

Injection Longitudinal Phase Space Matching

Motivation

- Arrival time and energy are the conjugate longitudinal variables
 - $\tau(t) = \tau_0 \cos \omega_s t$
 - $E(t) = E_0 \sin \omega_s t$
- Injected beam of correct energy that arrives at the correct time has zero oscillation amplitude
- Mismatched beam oscillates at synchrotron frequency
 - Time mismatch generates cosine-like oscillation
 - Energy mismatch generates sine-like oscillation
- Energy oscillation is measurable as a transverse oscillation in dispersive regions
- Injected current (single bunch) is very low ($\approx 50 \,\mu A 100 \,\mu A$)
 - Average over 16 injections to quadruple SNR to obtain desired resolution

Injection Longitudinal Phase Space Matching

Mismatched Longitudinal Injection

- Typical measurement of an injection phase error
 - Phase curve is cosine-like
 - Horizontal (dispersion) curve is sine-like
 - Fast horizontal motion is betatron oscillation from injection

04/16/2012

Injection Longitudinal Phase Space Matching

Matched Longitudinal Injection

- Properly tuned injection minimizes synchrotron oscillations
- Horizontal betatron oscillation of injected beam still exists, as expected

Low Level RF Tuning

- SPEAR has a short bunch "low α " mode
 - $\bullet \approx 3 \, \mathrm{ps} \; \mathrm{RMS} \; \mathrm{bunch}$
 - Require RF induced oscillations to be significantly smaller
- Measure phase oscillations of stored beam
 - Major contribution comes from HVPS SCR switching transients
- Increase LLRF loop gain to reduce amplitude to acceptable level

Lattice Resonance Experiments I

Probe Resonance Effects as a Function of Oscillation Amplitude

- Resonantly drive beam vertically to desired amplitude
- Kick beam horizontally
- Distance from the resonance can be measured by the damping time
- Data here with slow damping shows beam near resonance

Lattice Resonance Experiments II

Probe Resonance Effects as a Function of Oscillation Amplitude

- Lattice now tuned away from resonance
- The right hand figure is an expanded version of the data seen on the left
- Tune shift with amplitude can be calculated along the decay

