PAUL SCHERRER INSTITUT

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

Felix Müller, Bernd Steffen, Volker Schlott, Pavel Chevtsov

Electro Optical Sampling of Coherent Synchrotron Radiation for Picosecond Electron Bunches with few-pC Charge

Introduction - Swiss Light Source - SLS

2.4 GeV

5 - 6.8 nm rad

3 - 10 pm rad

400 mA (top-up)

288 m

0.09 %

~ 8 h

Key data:

- Beam Energy
- Circumference
- Emittances horizontal vertical
- Energy Spread
- Beam Current
- Life Time
- Nominal Pulse length 35 ps (rms)

SLS FEMTO Slicing Project: Tunable Sub-ps X-ray Source

Goal: Measurement of sliced particle distribution in time domain.

Method: EO offers the possibility to measure this low charge modulation single shot (turn by turn) with sub ps time resolution.

Outline

- •SLS FEMTO Bunch Slicing
 - Layout and Principle
 - Efficiency
- •Principle of Electro Optical Detection
 - Detection Schemes: Sampling and Spectral Decoding
- Results and Simulation
 - Sampling Measurements
 - Spectral Decoding Measurements
 - Comparison to Tracking Data

SLS FEMTO Bunch Slicing - Layout of FEMTO Bunch Slicing

Ti:Sa Laser Two stage amplification 5 mJ/pulse 2 kHz rep. rate 30 fs (rms)

Core Bunch/FEMTO slice separation Angular Dispersion (Chicane Magnets)

Radiator (Undulator) 4.2-14 keV 4*10⁵ ph/s/0.1%BW

Electron/Laser Interaction

Modulator

(Wiggler)

 \rightarrow periodic transverse component of momentum

SLS FEMTO Bunch Slicing - Layout of FEMTO Bunch Slicing

Electron Beam

- Bunchlength of sliced beam: $\sigma = 100$ fs, core beam: $\sigma = 35$ ps
- Slicing leads to longitudinal density modulation of core bunch, which will be lengthened through passage of storage ring proportional to the linear momentum compaction factor.
- Slicing efficiency per bunch: ~10⁻⁴ Bunch Charge: 5 nC →modulated bunch: few pC

Synchrotron Radiation

• Coherent (~ N²) enhancement of SR up to a factor of 100 compared to incoherent SR for wavelengths from ~ 0.1 mm up to 1 mm

Outline

- •SLS FEMTO Bunch Slicing
 - Layout and Principle
 - Efficiency
- •Principle of Electro Optical Detection
 - Detection Schemes: Sampling and Spectral Decoding
- Results and Simulation
 - Sampling Measurements
 - Spectral Decoding Measurements
 - Comparison to Tracking Data

Editor's Note: PDF version of slides from Beam Instrumentation Workshop 2010, Santa Fe, NM

Principle of EO Detection - The Electro-Optic Effect: Field Ind. Birefringence

$$P = \varepsilon_0 \left(\chi_e^{(0)} E \right) + \left(\chi_e^{(1)} E^2 \right) + \chi_e^{(2)} E^3 + \dots \right)$$

Pockels effect Kerr effect

• The THz radiation E_{THz} passes the EO-crystal in the (1,1,0)-plane

- The two components of a linearly polarized probe laser pulse E_{laser} will see different refractive indices n_1 and n_2 in the crystal leading to a phase retardation and a subsequent polarization change (from linear to elliptical) of the laser pulse
- The phase retardation is proportional to the optical properties of the EO-crystal, the THz field strength and the crystal thickness..:

$$\Gamma_{\max} = \frac{\omega d}{c} (n_1 - n_2) = \frac{\omega d}{c} E_{THz} n_0^3 r_{41}$$

Principle of EO Detection - Phase Retardation to Ampl. Mod.

Principle of EO Detection - Differnent Schemes

Principle of EO Detection - Differnent Schemes

Outline

- •SLS FEMTO Bunch Slicing
 - Layout and Principle
 - Efficiency
- •Principle of Electro Optical Detection
 - Detection Schemes: Sampling and Spectral Decoding
- Results and Simulation
 - Sampling Measurements
 - Spectral Decoding Measurements
 - Comparison to Tracking Data

Setup and Results - Sampling Measurements

- •Delaystage with 100 fs stepwidth
- •Averaged over 100 pulses

•Lab measurement:

FEMTO laser to EO laser jitter ~ 50 fs rms **but**...

additional arrival time jitter at IR beam line

Good phasematching and low frequencies allow thick crystals
ZnTe has a higher r₄₁ but worse optical quality

PAUL SCHERRER INSTITUT

Editor's Note: PDF version of slides from Beam Instrumentation Workshop 2010, Santa Fe, NM

Setup and Results - Spectral Decoding; Single Shot Measurements

Setup and Results - Spectral Decoding; Average

Subtraction of arrival time jitter

- → averaged spectral decoding data doesn't suffer from jitter.
- \rightarrow absolute THz field strength can be determined.

Comparison between spectral decoding and sampling measurements

Setup and Results - Tracking Results

- Due to energy exchange, sliced electrons have about 10 times higher energy spread
 - → broadening of electron distribution
 - ~ 4.8 ps / turn
 - \rightarrow broadening of "hole"
 - ~ 520 fs / turn

IR beam line acts as a highpass filter

- Sliced electron distribution is supressed due to long wavelength cut-off of IR beam line
 - \rightarrow only the "hole" is visible

Setup and Results - Tracking results

Averaged spectral decoding measurement of turn 0 is in good agreement with tracking results.

PAUL SCHERRER INSTITU

Preliminary results:

Sampling measurement system is sensitive enough to detect sliced particle distribution up to turn 3.

But: Tracking predicts much broader pulses \rightarrow further analysis is required.

Conclusion and Outlook

- It was possible to detect and characterize the low charge modulation produced by the FEMTO Slicing Experiment in time domain
 - with a scanning (EO sampling) technique
 - and in single shot (EO spectral decoding)
- Turn zero is in good agreement with the particle tracking
- Next steps:
 - Measurements directly after the FEMTO experiment
 - Freespace set-up is well suited for testing new crystals like DAST/DSTMS (much higher EO coefficient)
 - SwissFEL Injector will have 10 pC mode
 - \rightarrow EO measurement at the THz port after the first bunch compressor seems possible

My thanks go to:

Andreas Streun (PSI)

Infrared Beamline crew: Philippe Lerch, Hans Sigg and Luca Quaroni (PSI) FEMTO Slicing team: Gerhard Ingold, Steven Johnson and Paul Beaud (PSI) Thomas Feurer (Univ. Bern)

... and to the audience for the interest