2010 Beam Instrumentation Workshop

Advanced Modular Oscilloscopes & Digitizers Optimized for Accelerator Applications

Chris Ziomek & Boyd Shaw ZTEC Instruments

May 3, 2010

Agenda

- 1. ZTEC story
- 2. Accelerator instrumentation
- 3. Oscilloscope & digitizer applications
- 4. What did we miss?

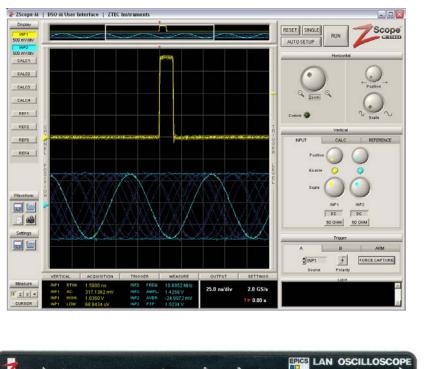
My Background

- 1986 1993: LANL
 - GTA, SSC, APS, Twente FEL, AFEL, ...
 - Digital & Controls Engineer
 - LLRF Section Leader
- 1993 1996: SLAC
 - PEP-II, NLCTA
 - Microwave Engineer
- 1996 present: ZTEC
 - Founder & President

Modular Instruments for ATE

Key ATE Design Wins

Military – Aerospace Test


- USN RTCASS
- USMC VIPER/T
- USAF TISS/TTIP
- USN ADEPT
- USN AVITS
- MoD Bowman Tester
- Honeywell F15J Tester
- BAE Korean F15 Tester
- Raytheon MK698 & Presidio Testers
- EADS-NA Test & Services Tester
- General Dynamics FOROPS/ELINT

Semiconductor Parametric Test

- Keithley 4200
- Auriga AU4750

Portable Instruments for Remote Access

Accelerator Instrumentation

TEC

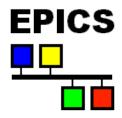
Invention & Experimentation

- The mission of Particle Accelerator Laboratories is to push the technology envelope.
- What you do will not be done by private industry.
- You are early adopters of new technology.
- Invention and experimentation are your focus.

Historical Perspective

My experience as early adopter in 1980s

- VXI
- PLDs
- LabVIEW
- Quadrature-sampled IF
- Adaptive feedforward control
- DSP-based control



Historical Perspective

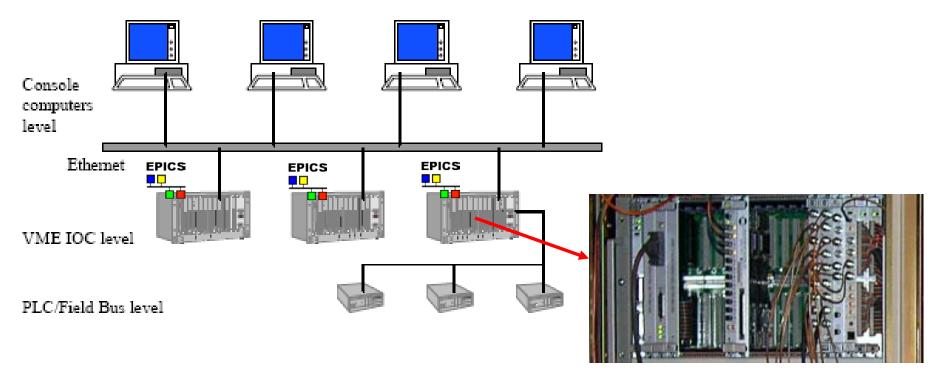
Other inventions

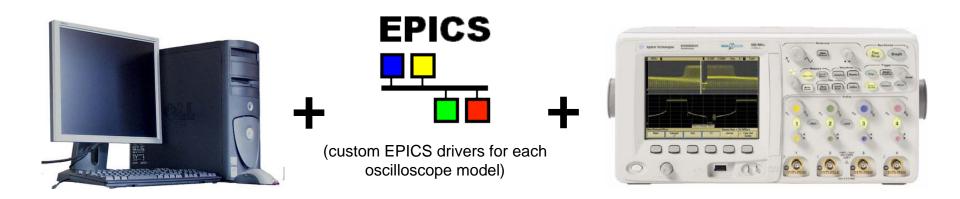
- EPICS, CA, EDM, MEDM, ...
- RF amplifiers, cavities & electronics
- Timing & synchronization methods
- FGPA-based fast parallel processing
- Advanced magnetic materials and field sources
- Beam diagnostic techniques & instrumentation
- Beam damping control systems

32-channel Faraday-cup array

Present Day

Beam Instrumentation Requirements


- More dynamic range
- More analog bandwidth
- Many synchronized channels
- Lots of data
 - High download throughput or
 - On-board data processing & reduction
- Low-latency signal processing
- Ease of integration
- Open source software


Oscilloscope & Digitizer Applications

Traditional Digitizer Implementations

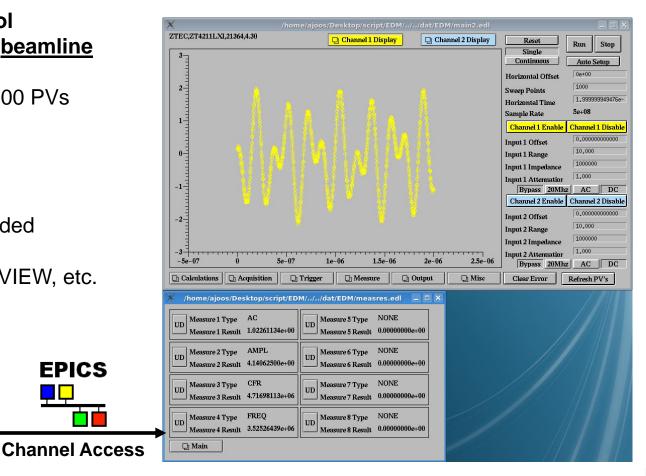
- Advantage: high channel density
- **Disadvantages**: requires embedded controllers (\$\$), requires EPICS drivers and integration, shared-controller data bottleneck

Traditional Oscilloscope Implementations

- Advantage: many benchtop oscilloscopes in use
- **Disadvantages**: requires PC controller (\$), slow throughput, requires EPICS drivers and integration, models change often, low channel density

EPICS Oscilloscopes

- <u>Full Performance Oscilloscopes</u> Benchtop oscilloscope capabilities; more functionality than digitizers
- <u>Embedded EPICS IOC</u> No external IOC required; no EPICS drivers or integration
- <u>Fast Onboard Processing</u>
 Fast waveform math and measurements; no IOC bottlenecks;
- <u>Compact</u> Up to 8 channels in 1U of rack space
- <u>ZTEC Knowledge & Support</u> Excellent product and EPICS knowledge and support.

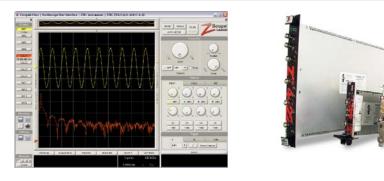

EPICS Oscilloscopes

Remote Monitoring & Control in the <u>control room</u> & at the <u>beamline</u>

- Embedded IOC publishes ~900 PVs using Channel Access
- Responsive remote interface
- EDM & MEDM displays included

a property

Export data to MATLAB, LabVIEW, etc.


EDM and MEDM Control & Display Panels

EPICS

Digitizers & Oscilloscopes

Series	Resolution	Maximum Sample Rate	Analog Bandwidth	Platform	Channels			Maximum
					PCI/PXI	VXI	LXI	Record Length
ZT4610	8 bit	4 GS/s	1 GHz	PCI, PXI, VXI, LXI	2	2 or 4	2 or 4	64M samples
ZT4210	8 bit	1 GS/s	300 MHz	PCI, PXI, VXI, LXI	2	2 or 4	2 or 4	256M samples
ZT450	8 bit	2.5 GS/s	750 MHz	PCI, PXI, VXI	2	4	-	32M samples
	8 bit	2 GS/s	500 MHz	PCI, PXI, VXI	2	4	-	32M samples
	8 bit	1 GS/s	500 MHz	PCI, PXI, VXI	2	4	-	32M samples
ZT430	12 bit	200 MS/s	90 MHz	PCI, PXI, VXI	2	4	-	4M samples
ZT4420	12 bit	1 GS/s	300 MHz	PCI, PXI, VXI, LXI	2	2 or 4	2 or 4	256M samples
ZT4430	13 bit	500 MS/s	300 MHz	PCI, PXI, VXI, LXI	2	2 or 4	2 or 4	256M samples
ZT4440	14 bit	800 MS/s	300 MHz	PCI, PXI, VXI, LXI	2	2 or 4	2 or 4	256M samples
ZT410	14 bit	500 MS/s	250 MHz	PCI, PXI, VXI	2	4	-	16M samples
	16 bit	400 MS/s	250 MHz	PCI, PXI, VXI	2	4	-	16M samples

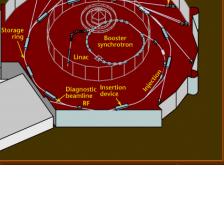
Deployed at Facilities Around the World

<u>US</u>

- Lawrence Berkeley
- SLAC
- Los Alamos
- Argonne
- Fermi
- Oak Ridge
- Jefferson Lab
- Lawrence Livermore
- Indiana University Cyclotron

International

- NSRRC Taiwan
- BESSY, DESY Germany
- Royal Halloway, Diamond Light UK
- J-PARC Japan
- CNRS France
- CERN Switzerland



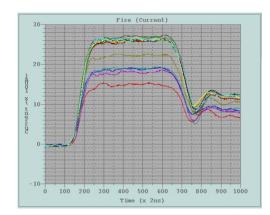
Remote monitoring via EPICS

- Monitor a variety of signals around the synchrotron
 - DCCT and ICT
 - BPM
 - Kicker
 - Klystron
- Continuous capture of up to four 25,000 point waveforms on each instrument for 500 ms
- Download and re-arm in time to capture next waveform at 1Hz
- Multiple applications using same data
 - EDM for display
 - MATLAB for analysis

High Dynamic Range Digitizers

PXI digitizers for Chi-Nu experiment

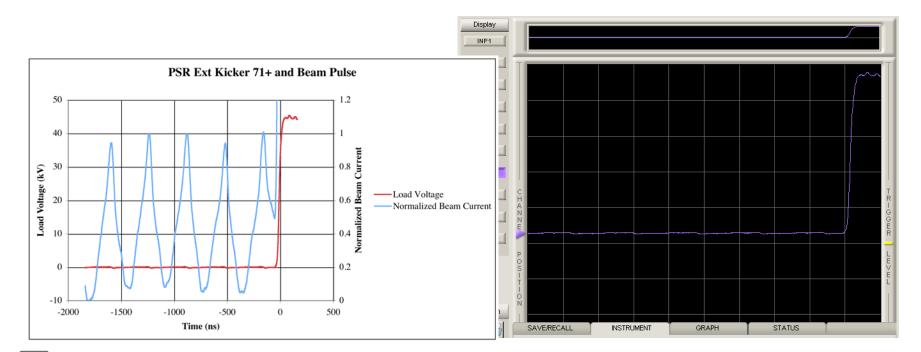
- 14-bit, 400 MS/s digitizers with <0.35 mV RMS noise (2 Vpp range)
- Star trigger to tightly synchronize multiple cards and multiple chassis
- Fiducial adds analog marker to waveform for absolute time reference across system
- On-board data analysis and reduction



Machine Protection

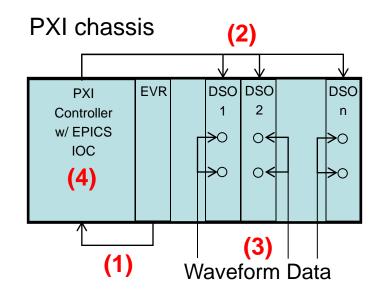
Real-time monitoring of injection/extraction waveforms for machine protection

- Key Benefits of EPICS Oscilloscope Solution for SNS
 - Embedded EPICS IOC
 - Dedicated processor for EPICS/CA
 - Fast Mask testing
 - Test 4 channels at 60Hz
 - Displays last failed waveform while monitoring
 - Test entire or partial waveform
 - Fast protection OK pulse output
 - Powers-on to specified instrument state



Remote monitoring via EPICS

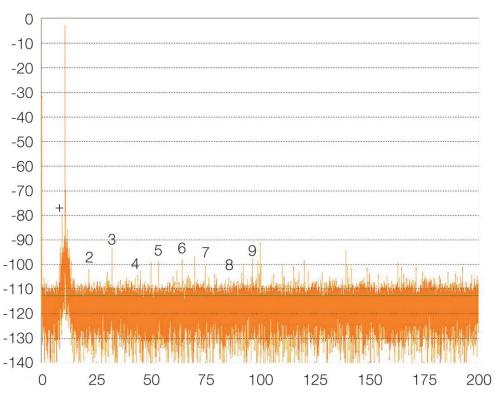
Extraction Kicker Monitor


- Replace bench oscilloscopes monitored via video feed
- Remote control via EPICS/EDM
- Adds quantitative analysis of waveforms

Beam Synchronous Acquisitions

ZTEC EPICS IOC in PXI

- 1. PXI controller or STAR card receives trigger from timing EVR card (Micro Research Finland)
- 2. ZTEC PXI oscilloscopes (DSO) receive trigger over backplane
- 3. Oscilloscopes capture waveforms and download waveform PVs to controller
- 4. Waveform PVs receive TSEL field from timing EVR card


* EPICS driver & service source code provides user customization

High Dynamic Range Digitizers

Product	Resolution	Maximum Sample Rate	Maximum Analog Bandwidth		Channels			Maximum
				Platform	PCI PXI	VXI	LXI	Record Length
ZT4420-DP Series	12 bit (488 µV)	500 MS/s	300 MHz	PCI, PXI, VXI, LXI	2	2 or 4	2 or 4	128 MS
ZT4430-DP Series	13 bit (244 µV)	250 MS/s	300 MHz	PCI, PXI, VXI, LXI	2	2 or 4	2 or 4	128 MS
ZT4440-DP Series	14 bit (122 µV)	400 MS/s	300 MHz	PCI, PXI, VXI, LXI	2	2 or 4	2 or 4	128 MS

Product	SNR	THD	SINAD	SFDR
ZT4420-DP Series	62.6 dBc	-86.7 dBc	62.5 dBc	81.5 dBc
ZT4430-DP Series	64.1 dBc	-86.7 dBc	64.0 dBc	81.5 dBc
ZT4440-DP Series	65.1 dBc	-86.7 dBc	65.0 dBc	81.5 dBc

Signal & Spectrum Analyzer

🜽 ZSignal M-Class | Signal Analyzer User Interface | ZTEC Instruments | ZTEC.ZT8441PXI,SIMULATION File View Operate Help 8× Ref Level +10.0 dB Signal SWEEP SINGLE 10.0 RBW Center Span 20.0 000.000Hz 7 8 9 Hz 4 5 6 kHz . 30.0 1 2 3 MHz • 4 V 0 +/- Bksp 50 D Peak Search 1th Center the Marker 2 Delta Marker 1 Center 100 MHz RBW 130 kHz Reset n 12 MHz 180 MHz 168 MHz Sweep 225 ms 40 dB Span 13 MHz S dB Clear Messages CONFIGURE OUTPUT SETTINGS

ZT8441 PXI RF/IF Digitizer

Frequency Range: DC to 1GHz

Instantaneous IF Bandwidth: *100 Hz to 150 MHz*

Real-Time Signal Processing: FPGA-based digital down conversion (DDC)

Alias-Free Sample Rate: 100 S/s to 400 MS/s

ADC: Dual 400 MS/s 14-bit

Spurious-Free Dynamic Range: > 80 dBc

Inputs: *RF or Dual I/*Q

Memory:

512 MiB or 128 MiSamples of I/Q data pairs

ZTEC Knowledge & Support

- ZTEC Instruments has the desire and the expertise to help with your accelerator instrumentation applications:
 - Application engineering support for EPICS
 - Quality and responsive pre-sales and post-sales support
 - Customized solutions to meet specific requirements

Conclusion

- 1. Particle Accelerator Laboratories are at the forefront of technology.
- 2. We strive to understand your needs & perspective.
- 3. We innovate to meet your objectives.
- 4. What did we miss? Challenge us.

Thank you!

For questions, or to setup an <u>remote EPICS oscilloscope</u> <u>demonstration</u>, please contact:

www.ztecinstruments.com

Chris Ziomek (505) 924-0589 cziomek@ztec-inc.com

ZTEC Instruments 7715 Tiburon St. NE Albuquerque, NM 87109 Phone: (505) 342-0132 Fax: (505) 342-0222

